Абсолютное значение числа это что
Абсолютная величина. Модуль.
Абсолютными величинами называются — объем или размер события, которое изучается или явления, процесса, который выражен в соответствующих единицах измерения в конкретных условиях места и времени.Или, другими словами: это просто число без учёта знака (всегда с плюсом).
Абсолютная величина числа или модуль числа x — неотрицательное число, определение которого зависит от типа числа x. Обозначается: |x|.
Если x вещественный, то абсолютная величина – это непрерывная кусочно-линейная функция, которая определяется так, формула:
Обобщением этого понятия есть модуль комплексного числа z=x+iy, иногда называют абсолютной величиной. Его определяют формулой:
Абсолютные величины, виды:
Свойства модуля.
.
Так как частное = , то . В силу предыдущего свойства имеем . Воспользуемся равенством , которое справедливо в силу определения модуля числа.
Основные свойства абсолютной величины.
Вещественные числа.
Комплексные числа.
Алгебраические свойства абсолютной величины.
Для каждого имеют место следующие соотношения:
Как для вещественных, так и для комплексных a, b имеют место соотношения:
Нельзя так просто взять и вычислить абсолютное значение
Кажется, задача вычисления абсолютного значения (или модуля) числа совершенно тривиальна. Если число отрицательно, давайте сменим знак. Иначе оставим как есть. На Java это будет выглядеть примерно так:
Вроде бы это слишком просто даже для вопроса на собеседовании на позицию джуна. Есть ли тут подводные камни?
Этот метод JIT-компилятор в идеале может вообще удалить полностью, потому что речь идёт просто про реинтерпретацию набора бит в процессоре, чтобы типы данных сошлись. А сами биты остаются одни и те же и процессору обычно наплевать на типы данных. Хотя говорят, что всё-таки это может привести к пересылке из регистра с плавающей точкой в регистр общего назначения. Но всё равно очень быстро.
Ладно, у нас осталось два ветвления для всех положительных чисел и нулей. Всё равно кажется, что много. Мы знаем, что ветвления — это плохо, если branch predictor не угадает, они могут очень дорого стоить. Можно ли сделать меньше? Оказывается, можно любой нуль превратить в положительный, если вычесть его из 0.0 :
Таким образом, можно написать:
Отлично, у нас теперь всегда одна ветка. Победа? Но как насчёт сделать всегда ноль веток? Возможно ли это?
Этот способ действительно не содержит ветвлений, и профилирование показывает, что пропускная способность метода при определённых условиях увеличивается процентов на 10%. Предыдущая реализация с одним ветвлением была в стандартной библиотеке Java с незапамятных времён, а вот в грядущей Java 18 уже закоммитили улучшенную версию.
В ряде случаев, впрочем, эти улучшения ничего не значат, потому что JIT-компилятор может использовать соответствующую ассемблерную инструкцию при её наличии и полностью проигнорировать Java-код. Например, на платформе ARM используется инструкция VABS. Так что пользы тут мало. Но всё равно интересная статья получилась!
Абсолютная величина. Модуль.
Абсолютными величинами называются — объем или размер события, которое изучается или явления, процесса, который выражен в соответствующих единицах измерения в конкретных условиях места и времени.Или, другими словами: это просто число без учёта знака (всегда с плюсом).
Абсолютная величина числа или модуль числа x — неотрицательное число, определение которого зависит от типа числа x. Обозначается: |x|.
Если x вещественный, то абсолютная величина – это непрерывная кусочно-линейная функция, которая определяется так, формула:
Обобщением этого понятия есть модуль комплексного числа z=x+iy, иногда называют абсолютной величиной. Его определяют формулой:
Абсолютные величины, виды:
Свойства модуля.
.
Так как частное = , то . В силу предыдущего свойства имеем . Воспользуемся равенством , которое справедливо в силу определения модуля числа.
Основные свойства абсолютной величины.
Вещественные числа.
Комплексные числа.
Алгебраические свойства абсолютной величины.
Для каждого имеют место следующие соотношения:
Как для вещественных, так и для комплексных a, b имеют место соотношения:
СОДЕРЖАНИЕ
Терминология и обозначения
Определение и свойства
Действительные числа
Поскольку символ квадратного корня представляет собой уникальный положительный квадратный корень (в применении к положительному числу), отсюда следует, что
| Икс | знак равно Икс 2 <\ Displaystyle | х | = <\ sqrt <х ^ <2>>>>
эквивалентно определению, приведенному выше, и может использоваться как альтернативное определение абсолютного значения действительных чисел.
Ниже приведены некоторые дополнительные полезные свойства. Это либо непосредственные следствия определения, либо подразумеваются четырьмя фундаментальными свойствами, указанными выше.
Два других полезных свойства, касающихся неравенств:
Эти отношения могут использоваться для решения неравенств, связанных с абсолютными величинами. Например:
Абсолютное значение, как «расстояние от нуля», используется для определения абсолютной разницы между произвольными действительными числами, стандартной метрики действительных чисел.
Сложные числа
где х и у являются действительными числами, то абсолютное значение или модуль из г обозначается | z | и определяется
Когда комплексное число z выражается в полярной форме как
Комплексное абсолютное значение разделяет четыре основных свойства, приведенных выше для реального абсолютного значения.
Важно отметить, что свойство субаддитивности (« неравенство треугольника ») распространяется на любой конечный набор из n комплексных чисел как ( z k ) k знак равно 1 п <\ textstyle (z_
Доказательство комплексного неравенства треугольника
Функция абсолютного значения
Связь со знаковой функцией
Функция абсолютного значения действительного числа возвращает его значение независимо от его знака, тогда как функция знака (или знака) возвращает знак числа независимо от его значения. Следующие уравнения показывают взаимосвязь между этими двумя функциями:
Производная
Реальная функция абсолютного значения является примером непрерывной функции, которая достигает глобального минимума там, где производная не существует.
Первообразный
Первообразной (неопределенного интеграла) вещественной функции абсолютного значения
Расстояние
Стандартное евклидово расстояние между двумя точками
Это можно рассматривать как обобщение, поскольку для и реального, то есть в 1-пространстве, согласно альтернативному определению абсолютного значения, а 1 <\ displaystyle a_ <1>> б 1 <\ displaystyle b_ <1>>
Выше показано, что расстояние «абсолютное значение» для действительных и комплексных чисел согласуется со стандартным евклидовым расстоянием, которое они наследуют в результате рассмотрения их как одномерного и двумерного евклидова пространства соответственно.
Свойства абсолютного значения разности двух действительных или комплексных чисел: неотрицательность, тождество неразличимых, симметрия и неравенство треугольника, данные выше, можно рассматривать как мотивирующие более общее понятие функции расстояния следующим образом:
Обобщения
Заказанные кольца
Четыре основных свойства абсолютного значения для действительных чисел могут быть использованы для обобщения понятия абсолютного значения на произвольное поле следующим образом.
Векторные пространства
Опять же, фундаментальные свойства абсолютного значения для действительных чисел могут быть использованы, с небольшими изменениями, для обобщения этого понятия на произвольное векторное пространство.
Композиционные алгебры
Модуль числа
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение модуля числа
Алгебра дает четкое определение модуля числа. Модуль в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.
Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».
Знак модуля: |a| = OA.
Разберем на примере:
Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.
Число 3 (длину отрезка OB) называют модулем числа −3.
Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).
Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.
Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.
Также можно опустить плюс и записать значение, как |4| = 4.
Записывайся на занятия по математике для учеников с 1 по 11 классы.
Свойства модуля числа
Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.
1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
2. Модуль положительного числа равен самому числу.
3. Модуль отрицательного числа равен противоположному числу.
4. Модуль нуля равен нулю.
5. Противоположные числа имеют равные модули.
6. Модуль произведения равен произведению модулей этих чисел.
Геометрическая интерпретация модуля
Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.
Нарисуем числовую прямую и отобразим это на ней.
Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.
Решим уравнение: |х| = 5.
Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.
График функции
График функции равен y = |х|.
Для x > 0 имеем y = x.
Этот график можно использовать при решении уравнений и неравенств.
Корень из квадрата
Оно равно a при а > 0 и −а, при а
Модуль комплексного числа
Чему равен модуль числа в данном случае? Это арифметический квадратный корень из суммы квадратов действительной и мнимой части комплексного числа:
Свойства модуля комплексных чисел
Модуль рационального числа
Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.
Модуль рационального числа, примеры:
Модуль вещественных чисел
Модуль противоположного числа, нуля, отрицательного и положительного чисел
Закрепим свойства модуля числа, которые мы рассмотрели выше: