Алгебра что за наука

Алгебра

А́лгебра (от араб. الجبر ‎‎, «аль-джабр» — восполнение [1] ) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.

Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.

Алгебраическая система — упорядоченная пара множеств Алгебра что за наука. 2857111706f02d396df437280e7d4367. Алгебра что за наука фото. Алгебра что за наука-2857111706f02d396df437280e7d4367. картинка Алгебра что за наука. картинка 2857111706f02d396df437280e7d4367. Первое множество (Алгебра что за наука. e1e1d3d40573127e9ee0480caf1283d6. Алгебра что за наука фото. Алгебра что за наука-e1e1d3d40573127e9ee0480caf1283d6. картинка Алгебра что за наука. картинка e1e1d3d40573127e9ee0480caf1283d6) — элементы какой либо природы (числа, понятия, буквы). Второе множество (Алгебра что за наука. 3a3ea00cfc35332cedf6e5e9a32e94da. Алгебра что за наука фото. Алгебра что за наука-3a3ea00cfc35332cedf6e5e9a32e94da. картинка Алгебра что за наука. картинка 3a3ea00cfc35332cedf6e5e9a32e94da) — операции над первым множеством (сложение, умножение, возведение в степень). Примеры: группа, кольцо, поле.

Содержание

История

Истоки алгебры уходят к временам глубокой древности. Ещё 4000 лет назад вавилонские учёные могли решать квадратные уравнения. Тогда никаких обозначений не было, и уравнения записывались в словесной форме. Первые обозначения появились в Древней Греции благодаря учёному Диофанту. Неизвестное число он назвал «ἀριθμός», вторую степень неизвестного — «δύναμις», третью «κύβος», четвёртую — «дюнамодюнамис», пятую — «дюнамокюбос», шестую — «кюбоккюбос». Все эти величины он обозначал сокращениями (ар, дю, кю, ддю, дкю, ккю). Ни вавилоняне, ни греки не знали и не признавали отрицательные числа.

За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения. Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В 13 веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя. [2]

В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.

Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.

Классификация

Алгебру можно грубо разделить на следующие категории:

В некоторых напралениях углублённого изучения, аксиоматические алгебраические системы, такие как группы, кольца, поля и алгебры над полем на присутствие геометрических структур (метрик и топологий), совместимых с алгебраическими структурами. Список некоторых разделов функционального анализа:

Элементарная алгебра

Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a,b,c,x,y и так далее). Такой подход полезен, потому что:

Источник

А́ЛГЕБРА

Том 1. Москва, 2005, стр. 415

Скопировать библиографическую ссылку:

А́ЛГЕБРА [ср.-век. лат. al­geb­ra, от араб. аль-джебр, аль-джабр – вос­со­е­ди­не­ние (от­дель­ных ча­стей урав­не­ния)], раз­дел ма­те­ма­ти­ки, при­над­ле­жа­щий, на­ря­ду с ариф­ме­ти­кой и гео­мет­ри­ей, к чис­лу ста­рей­ших вет­вей этой нау­ки; она изу­ча­ет опе­ра­ции над ма­те­ма­тич. объ­ек­та­ми и влия­ет на фор­ми­ро­ва­ние об­щих по­нятий и ме­то­дов ма­те­ма­ти­ки. За­да­чи и ме­то­ды А. за­клю­ча­лись пер­во­на­чаль­но в со­став­ле­нии и ре­ше­нии урав­не­ний. В свя­зи с ис­сле­до­ва­ния­ми урав­не­ний раз­ви­ва­лось по­ня­тие чис­ла, бы­ли вве­де­ны от­ри­ца­тель­ные, ра­ци­о­наль­ные, ир­ра­цио­наль­ные и ком­плекс­ные чис­ла; об­щее ис­сле­до­ва­ние свойств этих чи­сло­вых сис­тем от­но­сит­ся к А. В ал­геб­ре сфор­ми­ро­ва­лись бу­к­вен­ные обо­зна­че­ния, по­зво­лив­шие за­пи­сать свой­ст­ва дей­ст­вий над чис­ла­ми в фор­ме, не со­дер­жа­щей кон­крет­ных чи­сел. Пре­об­ра­зо­ва­ния по оп­ре­де­лён­ным пра­ви­лам (свя­зан­ным со свой­ст­ва­ми дей­ст­вий) бу­к­вен­ных вы­ра­же­ний со­став­ля­ет ап­па­рат клас­сич. А. Раз­ви­тие А. ока­за­ло боль­шое влия­ние на раз­ви­тие но­вых об­лас­тей ма­те­ма­ти­ки, в ча­ст­но­сти ма­те­ма­тич. ана­ли­за, диф­фе­рен­ци­аль­но­го и ин­те­граль­но­го ис­чис­ле­ния. При­ме­не­ние А. воз­мож­но всю­ду, где при­хо­дит­ся иметь де­ло с опе­ра­ция­ми, ана­ло­гич­ны­ми сло­же­нию и ум­но­же­нию чи­сел. Эти опе­ра­ции мо­гут про­из­во­дить­ся над объ­ек­та­ми са­мой раз­лич­ной при­ро­ды. Наи­бо­лее из­вест­ным при­ме­ром та­ко­го рас­ши­рен­но­го при­ме­не­ния ал­геб­ра­ич. ме­то­дов яв­ля­ет­ся век­тор­ная ал­геб­ра (см. Ли­ней­ная ал­геб­ра ) и её даль­ней­шее обоб­ще­ние – тен­зор­ная ал­геб­ра (см. Тен­зор­ное ис­чис­ле­ние ), став­шая од­ним из важ­ных средств совр. фи­зи­ки.

Источник

Алгебра что за наука. istoriya vozniknoveniya. Алгебра что за наука фото. Алгебра что за наука-istoriya vozniknoveniya. картинка Алгебра что за наука. картинка istoriya vozniknoveniya

Классификация раздела

Алгебра является разделом математики. Она классифицируется на несколько видов:

Алгебра что за наука. istoriya poyavleniya algebry. Алгебра что за наука фото. Алгебра что за наука-istoriya poyavleniya algebry. картинка Алгебра что за наука. картинка istoriya poyavleniya algebry

Каждый из этих разделов решает определенные задачи. При этом наука не стоит на месте и продолжает развитие.

Древняя история

Информация об истории возникновения алгебры связывается с древними рукописями. В те времена появилось понятие о натуральных числах, с которыми можно было проводить арифметические операции. Такая потребность возникла в связи с проведением астрономических и других видов расчетов. Изучая историю алгебры, становится понятно, что ее зарождение произошло в античной Греции.

Алгебра что за наука. pridumal algebru. Алгебра что за наука фото. Алгебра что за наука-pridumal algebru. картинка Алгебра что за наука. картинка pridumal algebru

Происхождение науки связывается с мыслителем Диофантом. На сегодняшний день трудно сказать, кто придумал алгебру, но именно этим человеком были впервые введены буквенные обозначения чисел. На основании полученных сообщений известно, что Диофант знал о сокращении чисел и умел переносить члены из разных частей уравнения.

Информация об ученом содержится только в одном историческом труде, поэтому сказать точно, что математик создал алгебру, невозможно. К тому же этот источник дошел до нынешних времен не в полном объеме.

Продвижение на Восток

Достижения европейцев в области развития алгебры прервались после нашествий варварских племен. Кроме того, уменьшение к ней интереса произошло с открытием геометрии, которая стала считаться основным разделом математики. В этот период многие науки получили свое развитие на Востоке. Здесь продолжилось становление и алгебры. Поскольку все достижения Европы практически были забыты, создателем этой науки в мусульманском мире считается Ала-Хорезми. Произошло это после создания им трактата под названием «Учение об отношениях, перестановках и решениях». Некоторые ученые считают, что слово «алгебра» может вести свое начало от термина «алгоритм».

При этом существуют гипотезы, что мусульманский мир опирался в своих изучениях на европейские достижения. В некоторых их летописях присутствуют фамилии греческих последователей Диофанта, приводятся их высказывания относительно этой науки.

Вклад других стран

Основателем алгебры считается Ала-Хорезми, но особого развития она у арабов она получила. Однако именно они изобрели на своем языке арабские цифры, которые применяются в современном мире. Существенный вклад в развитие науки внесли представители и других стран. Кратко их достижения выражаются в следующем:

Таким образом, в развитии этого раздела принимали участие многие страны мира. Их исследовательские работы вносили общий вклад в становление алгебры.

Алгебра что за наука. istoriya algebry. Алгебра что за наука фото. Алгебра что за наука-istoriya algebry. картинка Алгебра что за наука. картинка istoriya algebry

Под конец XVI века эта часть математики снова возвращается в Европу, откуда она взяла свое начало. Этому способствовало купечество, разъезжающее по всему свету и знакомившееся с математикой. Дальнейший толчок произошел после распада феодальной системы. Страны, ставшие на капиталистический путь развития, уже не могли обойтись без алгебраических действий.

Алгебра относится к наиболее интересным наукам, которые изучаются учениками школ и студентами вузов. Учащиеся постоянно пишут рефераты и готовят доклады на различные темы, относящиеся к этому разделу математики. В дальнейшем они зачитывают свои работы на уроках.

Источник

Реферат на тему: История появления алгебры как науки

Алгебра что за наука. 333751. Алгебра что за наука фото. Алгебра что за наука-333751. картинка Алгебра что за наука. картинка 333751

Содержание:

Введение

Деление алгебры

В настоящее время, отчасти по педагогическим соображениям, отчасти в силу исторического развития этой науки, алгебра делится на низшую и высшую. К низшей алгебре относятся теория элементарных арифметических операций над алгебраическими выражениями, решение уравнений первой и второй степени, теория степеней и корней, теория логарифмов и комбинаторика. Высшая алгебра включает в себя теорию уравнений произвольных степеней, теорию исключений, теорию симметричных функций, теорию подстановок и, наконец, представление различных частных способов разделения корней уравнений, определения числа действительных или мнимых корней данного уравнения с числовыми коэффициентами и приближенных или аналитических (когда это возможно) уравнений произвольных степеней.

История алгебры

Происхождение термина «алгебра».

Происхождение самого слова «алгебра» не совсем ясно. По мнению большинства исследователей, слово «алгебра» происходит от названия работы арабского математика аль-Хорезми (от названия которого, по мнению большинства исследователей, происходит популярное слово «алгоритм») «аль-Джабр аль-мукабала», то есть «учение о перестановках, соотношениях и решениях», но некоторые авторы производят слово «алгебра» от имени математики ГЕБЕРА, но само существование такой математики подлежит сомнению.

Самые старые комбинации в алгебре

Первой дошедшей до нас работой, содержащей исследование алгебраических вопросов, является трактат Диофанта, жившего в середине IV века. В этом трактате мы находим, например, правило знаков (минус на минус дает плюс), изучение степеней чисел и решение многих неясных вопросов, которые в настоящее время относятся к теории чисел. Из 13 книг, составлявших полное собрание сочинений Диофанта, до нас дошло только 6, в которых решаются уже довольно сложные алгебраические задачи. Мы не знаем никаких других работ по алгебре в древности, кроме утраченной работы знаменитой дочери Теона, Ипатии.

Арабская алгебра

В Европе алгебра вновь появляется только в эпоху Возрождения, и то от арабов. Как арабы достигли истин, которые мы находим в их писаниях, дошедших до нас в большом количестве, неизвестно. Возможно, они были знакомы с трактатами греков или, как некоторые думают, получили свои знания из Индии. Сами арабы приписывали изобретение алгебры. Магомед ибн Муса, живший примерно в середине девятого века в царствование халифа Аль-Мамуна. Во всяком случае, греческие авторы были известны арабам, которые собирали древние труды по всем отраслям науки. Магомед Абульвафа переводил и комментировал труды Диофанта и других предшествовавших ему математиков (в X веке). Но ни он, ни другие арабские математики не привнесли в алгебру много своего. Они изучили его, но не улучшили.

Возрождение алгебры в Европе

Решение уравнений третьей и четвертой степени

Вскоре было найдено решение уравнений четвертой степени. Итальянский математик предложил задачу, решение которой по известным до того времени правилам было недостаточным и требовало умения решать биквадратичные уравнения. Большинство математиков считали эту проблему неразрешимой. Но Кардано предложил его своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решения уравнений четвертой степени в целом, сведя их к уравнениям третьей степени. В работе Тартальи, напечатанной в 1546 году, мы также находим изложение метода решения не только уравнений первой и второй степени, но и кубических уравнений, и описан инцидент между автором и Кардано, описанный выше. Работа Бомбелли, опубликованная в 1572 году, интересна тем, что в ней рассматривается так называемый неприводимый случай кубического уравнения, который смутил Кардано, не сумевшего решить его с помощью своего правила, а также указывается на связь этого случая с классической задачей о трисекции угла. алгебра уравнения математической

Развитие алгебры в Европе

В Германии первая работа по алгебре принадлежит Христиану Рудольфу Яуэрскому и впервые появилась в 1524 году, а затем снова была опубликована Штифелем в 1571 году. Сами Штифель и Шейбл, независимо от итальянских математиков, разработали некоторые алгебраические вопросы.

В Англии первый трактат по алгебре принадлежит Роберту Рекорду, профессору математики и медицины в Кембридже. Его сочинение по алгебре называется «Точильный камень остроумия». Здесь впервые вводится знак равенства ( = ). Во Франции в 1558 году появилось первое сочинение по алгебре Пелетария; в Голландии в 1585 году Стевин не только представил уже известные ему исследования, но и внес некоторые усовершенствования в алгебру. Например, он обозначал неизвестное. Однако для обозначения неизвестного он использовал только цифры, обведенные по кругу. Итак, первое неизвестное (теперь обычно обозначаемое х) В его случае обозначалось обведенной единицей, второе-обведенной двойкой и так далее. Большие успехи были сделаны в алгебре после трудов Виеты, который первым рассмотрел общие свойства уравнений произвольных степеней и показал методы приближенного нахождения корней любых алгебраических уравнений. Он первым обозначил буквами величины, входящие в уравнения, и тем самым придал алгебре ту общность, которая является характерной чертой алгебраических исследований нового времени. Он также очень близко подошел к открытию биномиальной формулы, найденной позднее Ньютоном, и, наконец, в его трудах можно даже найти разложение отношения стороны квадрата, вписанного в окружность, к дуге окружности, выраженной в виде бесконечного произведения. Фламандец Альберт Жирар, или Жерар, чей трактат по алгебре появился в 1629 году, первым ввел в науку понятие мнимых величин. Англичанин Харриот показал, что каждое уравнение можно рассматривать как произведение некоторого числа факторов первого порядка, и ввел знаки > и

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Алгебра – основные понятия и формулы

В школьном курсе алгебры не так уж много теории. Намного больше практики, то есть секретов и приемов решения задач. Хороший репетитор-математик вряд ли будет читать вам на каждом уроке длинные лекции. Он скажет: «Смотри, как решаются такие задачи!»

И все-таки минимальное знание теории необходимо. Основные понятия и формулы надо знать наизусть.

Например, что такое квадратный корень из неотрицательного числа?

Что такое модуль числа?

Для каких чисел существуют логарифмы?

Чем действительные числа отличаются от рациональных?

Как узнать, что число делится на 11?

На этой странице – все основные темы и понятия алгебры, необходимые учащимся 10-11 класса. И еще – полезная информация о том, как считать быстро и без калькулятора и как легко запоминать формулы.

Проверь себя. Помнишь ли ты основные понятия алгебры?

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

— Определение модуля числа:

Алгебра что за наука. 1 2. Алгебра что за наука фото. Алгебра что за наука-1 2. картинка Алгебра что за наука. картинка 1 2

— Знаешь ли ты, что корни второй, третьей, четвертой, пятой, n-ной степени можно записывать просто как степени? И это намного удобнее. Например,

Напомним, что корень третьей степени из а – такое число, при возведении которого в третью степень получается число а.

Аналогично, корень четвертой степени из а – такое неотрицательное число, при возведении которого в четвертую степень получается число а.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *