фронтальная плоскость проекции обозначается буквой какой
Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании
Публикации для людей, интересующихся наукой и техникой
ПЛОСКОСТЬ – является простейшей поверхностью, которую можно представить, например, как веер линий, полученных при движении прямой, закрепленный в некоторой (.), по другой прямой
В отличие от линии, плоскость не может быть задана на чертеже своими проекциями. Плоскость в пространстве безгранична, бесконечна, а потому проекции её (.) займут всё поле чертежа. Положение плоскости в пространстве определяется положением задающихся ее элементов, входящих в определитель плоскости, т.е. плоскость задается проекциями геометрических объектов, располагающихся на ее поверхности. Графически плоскость может быть задана одним из шести способов:
От любого из этих способов можно легко перейти к любому другому.
СЛЕДЫ ПЛОСКОСТИ (сп) – пл, по которой данная плоскость пересекается с горизонтальной, фронтальной или профильной пп. В зависимости от того, какую пп данная плоскость пересекает, различают: фронтальный, горизонтальный и профильный следы плоскости. Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие – разноименные проекции – оказываются лежащими на осях координат. Проекции следов, совпадающие с осями координат, обозначать не принято. Любые два следа плоскости, как две пересекающиеся прямые, вполне определяют положение плоскости в пространстве. Третий след плоскости всегда можно построить по двум данным. След плоскости как линия в системе пп является линией нулевого уровня, т.к. принадлежит поверхности какой-либо плоскости проекций.
ТОЧКИ СХОДА СЛЕДОВ (тсс) – точки пересечения следов заданной плоскости с координатными осями X, Y и Z. Обозначаются, например, для плоскости α соответственно αx, αy, αz.
ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (поп) – это плоскость, занимающая произвольное положение относительно плоскостей проекций, т.е. она не ⟂ и не ∥ ни одной основной плоскости проекций. Ни одна из ортогональных проекций геометрических объектов, задающих плоскость общего положения, не сливается в пл. Метрические характеристики такой плоскости на чертеже искажаются и не могут быть определены непосредственно с чертежа плоскости. Различают: восходящие и нисходящие плоскости общего положения.
ВОСХОДЯЩАЯ ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (впоп) – плоскость произвольного положения, которая, удаляясь от наблюдателя, идет вверх (на подъем). Метрические характеристики данной плоскости на чертеже напрямую не определяются. Угол наклона такой плоскости можно получить с использованием линии ската.
НИСХОДЯЩАЯ ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (нпоп) – плоскость произвольного положения, которая, удаляясь от наблюдателя, идет вниз (на спуск). Метрические характеристики данной плоскости на чертеже напрямую не определяются. Угол наклона такой плоскости можно получить с использованием линии ската.
ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ (пчп) – это плоскости, ⟂ либо ∥ пп. Различают: проецирующие плоскости и плоскости уровня. На ортогональном чертеже любой плоскости частного положения хотя бы одна проекция всегда вырождается в пл.
ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (пп) – это плоскость, ⟂ к одной из пп и при этом не ⟂ и не ∥ двум другим. В зависимости от того к какой плоскости проекций ⟂ проецирующая плоскость, различают: горизонтально проецирующую, фронтально проецирующую и профильно проецирующую плоскости.
ГОРИЗОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (гпп) – плоскость, ⟂ горизонтальной плоскости проекций П1 и при этом не ⟂ и не ∥ фронтальной П2 и профильной П3 плоскостям проекций. Гпп представляет собой прямую линию, которая одновременно является гcп. Любой геометрический объект, расположенный в этой плоскости, проецируется на горизонтальной плоскости проекций П1 в эту прямую. Угол, который составляет гсп с координатной осью Х, равен углу наклона этой плоскости к фронтальной плоскости проекций П2, а с координатной осью Y– к профильной плоскости проекций П3. Фронтальный след гпп ⟂ оси координат X.
ФРОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (фпп) – плоскость, ⟂ фронтальной плоскости проекций П2 и при этом не ⟂ и не ∥ горизонтальной П1 и профильной П3 плоскостям проекций. Фпп представляет собой прямую линию, которая одновременно является фсп. Любой геометрической объект, лежащий в этой плоскости, на чертеже совмещен с ее фронтальным следом. Угол, который составляет фсп с координатной осью Х, равен наклону данной плоскости к горизонтальной плоскости проекций П1, а с координатной осью Z – к профильной плоскости проекций П3. Горизонтальный след фронтально проецирующей плоскости перпендикулярен оси координат Х.
ПРОФИЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (ппп) – плоскость, ⟂ профильной плоскости проекций П3 и при этом не ⟂ и не ∥ горизонтальной П1 и фронтальной П2 плоскостям проекций. Ппп представляет собой прямую линию, которая одновременно является профильным следом плоскости. Любой геометрический объект, лежащий в этой плоскости, на чертеже совмещен с ее профильным следом. Угол, который составляет псп с координатной осью Y, равен наклону данной плоскости к горизонтальной плоскости проекций П1, а с координатной осью Z – к фронтальной плоскости проекций П2. Горизонтальный след такой плоскости перпендикулярен оси Y. В зависимости от удаления от наблюдателя различают: восходящую профильно проецирующую и нисходящую ппп.
ПЛОСКОСТЬ УРОВНЯ (пу) – это плоскость ∥ одной из плоскостей проекций, а значит ⟂ одновременно к двум другим плоскостям проекций. В зависимости от того какой плоскости проекций параллельна данная плоскость, различают: горизонтальную, фронтальную и профильную плоскости уровня. Любой геометрический объект, расположенный в плоскости уровня, в зависимости от параллельности проецирует на одну из плоскостей проекций в натуральную величину.
ГОРИЗОНТАЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (гпу) – плоскость, ∥ гпп П1 и при этом ⟂ фронтальной П2 и профильной П3 плоскостям проекций. Фронтальная и профильная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости, и ∥ осям координат X и Y соответственно. Любой геометрический объект, расположенный в гпу, проецируется без искажения на гпп П1.
ФРОНТАЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (фпу) – плоскость, ∥ фронтальной плоскости проекций П2 и при этом ⟂ горизонтальной П1 и профильной П3 плоскостям проекций. Горизонтальная и профильная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости и ∥ осям координат Х и Z соответственно. Любой геометрический объект, расположенный во фпу, проецируется без искажения на фронтальную плоскость проекций П2.
ПРОФИЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (ппу) – плоскость, ∥ профильной плоскости проекций П3 и при этом ⟂ горизонтальной П1 и фронтальной П2 плоскостям проекций. Горизонтальная и фронтальная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости и ∥ осям координат Y и Z соответственно. Любой геометрический объект, расположенный в ппу, проецируется без искажения на ппп П3.
ГЛАВНЫЕ ЛИНИИ ПЛОСКОСТИ (глп) – это пл, расположенные в данной плоскости, выделяемые среди множества других линий, как занимающие особое положение. Это линии уровня плоскости: горизонталь h, фронталь f и ппп p, а также линии наибольшего наклона плоскости к плоскостям проекций П1, П2 и П3.
ГОРИЗОНТАЛЬ ПЛОСКОСТИ (гп) – пл, принадлежащая этой плоскости и ∥ гпп П1, т.е. это горизонтальная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Фронтальная и профильная проекции горизонтали плоскости ∥ осям координат X и Y соответственно Все горизонтали плоскости ∥ друг другу и горизонтальному следу своей плоскости. Обозначается на чертеже буквой – h.
ФРОНТАЛЬ ПЛОСКОСТИ (фп) – пл, принадлежащая этой плоскости и ∥ фпп П2, т.е. это фронтальная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Горизонтальная и профильная проекции фронтали плоскости ∥ осям координат X и Z соответственно. Все фронтали плоскости параллельны друг другу и фронтальному следу своей плоскости. Обозначается на чертеже буквой – f.
ПРОФИЛЬНАЯ ПРЯМАЯ ЛИНИЯ ПЛОСКОСТИ (пплп) – пл, принадлежащая этой плоскости и параллельная профильной плоскости проекций П3, т.е. это профильная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Фронтальная и горизонтальная проекции профильной прямой плоскости параллельны осям координат Z и Y соответственно. Все профильные прямые линии плоскости параллельны друг другу и профильному следу своей плоскости. Обозначается на чертеже буквой – p.
ЛИНИИ НУЛЕВОГО УРОВНЯ ПЛОСКОСТИ (лнуп) – это пл, принадлежащие одновременно данной плоскости и какой-либо плоскости проекций, т.е. являются одновременно и главными линиями плоскости, и следами этой плоскости. Горизонтальный след плоскости – это горизонталь плоскости нулевого уровня, фронтальный след плоскости – фронталь плоскости нулевого уровня и профильный след плоскости – профильная прямая плоскости нулевого уровня. Обозначаются на чертеже – hоά, fоά, ρоά соответственно.
ЛИНИИ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ (лннп) к плоскостям проекций П1, П2 и П3 – пл, лежащие в ней и ⟂ или к горизонталям плоскости, или к ее фронталям, или к ее профильным прямым.
ЛИНИЯ СКАТА ПЛОСКОСТИ (лсп) – линия наибольшего наклона плоскости к гпп П1, т.е. пл, проведенная по поверхности плоскости ⟂ любой горизонтали этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между горизонталью плоскости и линией ската плоскости проецируется на гпп П1 без искажения. Лсп и ее горизонтальная проекция образуют линейный угол, которым измеряется двугранный, составленный данной плоскостью и пп П1.
ЛИНИЯ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ФРОНТАЛЬНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ П2 (лннпкфпп) – пл, проведенная по поверхности какой-либо плоскости ⟂ любой фронтали этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между лннпкфпп П2 и фронталью этой плоскости проецируется на фронтальную плоскость проекций П2 без искажения.
ЛИНИЯ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ПРОФИЛЬНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ П3 (лннпкппп) – пл, проведенная по поверхности плоскости перпендикулярно профильной прямой линии уровня этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между лннпкппп П3 и профильной прямой линией этой плоскости проецируется на профильную плоскость проекций П3 без искажения.
Если у вас остались вопросы или предложения по данной статье, направляйте ваш материал к нам на контакты.
Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании
Публикации для людей, интересующихся наукой и техникой
Начертательная геометрия является технической учебной дисциплиной, изучаемой в ВУЗах. Она изучает и объясняет способы изображений пространственных форм (линий, поверхностей, тел) на области и способы решений вопросов геометрического характера по заданным изображениям указанных форм.
СПЛОШНАЯ ТОЛСТАЯ ЛИНИЯ (стл) – отображение ортогонального и аксонометрического чертежа. Это результат прямоугольного проецирования видимых зрителю ребер объёмного объекта и контуров его кривых поверхностей. Согласно гост 2.303-68 стл используется для изображения линий рамки и основной надписи чертежа.
СПЛОШНАЯ ТОНКАЯ ЛИНИЯ (стнл) – вертикальные и горизонтальные линии чертежа, соединяющие между собой следов смежных проекционных плоскостей какой-либо вершины трехмерного объекта. Стнл используются на учебных чертежах, на производственных чертежах и называются проекционными линиями связи.
ШТРИХОВАЯ ЛИНИЯ (шл) – изображение на ортогональном и аксонометрическом чертежах контуров кривых поверхностей трехмерного объекта, не видимых зрителю. Гост 2.303-68 предлагает толщину шл на половину тоньше линий видимого контура объекта, изображаемого стл. При изображении шл понимается черточка короткий отрезок.
ШТРИХПУНКТИРНАЯ ЛИНИЯ (шпл) – рисунок на ортогональном и аксонометрическом чертеже предполагаемых линий: осей вращения, координат, симметрии. Указанные линии не являются частью конструкции проецируемого объекта, они не имеют реальной материализации. Использование на чертеже различных осей уточняет графическую историю о устройстве и технологии производства 3D объекта. Подробнее о выполнении чертежей и 3D объёмного моделирования можно узнать тут. Например, изображение шпл обращает призор на симметричность частей объекта, а изображение оси вращения кривой поверхности цилиндрического отверстия указывает направление движения оси бора при изготовлении этого отверстия. Шпл представляет собой чередование коротких линий и точек. Штрих понимается как черточка, короткий отрезок, а пунктир – (.). Применение на чертеже данной линии регламентируется гостом 2.303-68, в соответствии которому линия выступает за изображение от 2 до 7 мм.
ПРОЕЦИРОВАНИЕ ПРЯМОЙ ЛИНИИ – это траектория движущейся в пространстве (.). Выделяют: кривые и прямые линии.
ВОСХОДЯЩАЯ ПРЯМАЯ ЛИНИЯ ОБЩЕГО ПОЛОЖЕНИЯ (вплоб) – пл, восходящая по мере удаления от зрителя. На чертеже размер координаты Z начала такой прямой всегда меньше, чем у точки окончания траектории этой прямой. В зависимости от того, где расположен конец вплоб, различают восходящую вправо и восходящую влево пл.
НИСХОДЯЩАЯ ПРЯМАЯ ЛИНИЯ ОБЩЕГО ПОЛОЖЕНИЯ (нплоп) – пл, убывающая по мере удаления от зрителя. На чертеже размер координаты Z начала такой прямой всегда больше, чем у точки окончания этой прямой. В зависимости от того, где расположен финиш восходящей прямой относительно наблюдателя, различают нисходящую вправо и нисходящую влево пл.
ПРЯМЫЕ ЛИНИИ ЧАСТНОГО ПОЛОЖЕНИЯ (плчп) – пл, ориентированы определенным образом относительно плоскостей проекций: ∥ и ⟂ принадлежащие плоскостям проекций.
ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (ппл) – пл, ⟂ плоскости проекций и при этом ∥ двум другим плоскостям проекций. Проекция прямой линии обращается точку на той плоскости, относительно которой отрезок ⟂, а на плоскостях проекций, которым она ∥, проецируется в натуральную величину (нв). Различают: горизонтально проецирующие, фронтально проецирующие, профильно проецирующие пл.
ГОРИЗОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (гппл) – пл, ⟂ горизонтальной плоскости проекций П1 и при этом ∥ фронтальной П2 и профильной П3 плоскостям проекций. Фронтальная и профильная проекции (фпп) ортогонального чертежа этой прямой равны ее нв и расположены ∥ оси координат Z, а горизонтальная проекция – (.). Размеры одноименных координат Y и X всех точек такой пл равны, а размеры координаты Z отличаются друг от друга.
ФРОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (фппл) – пл, ⟂ фронтальной плоскости проекций П2 и при этом ∥ горизонтальной П1 и профильной П3 плоскостям проекций. Гпп ортогонального чертежа этой пл равны ее нв и расположены ∥ оси координат Y, а фронтальная проекция – (.). Все (.) такой прямой имеют равные одноименные размеры координат X и Z.
ПРОФИЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ ЛИНИЯ (пппл) – пл, ⟂ профильной плоскости проекций П3 и при этом ∥ горизонтальной П1 и фронтальной П2 плоскостям проекций. Горизонтальная и фронтальная проекции ортогонального чертежа этой прямой линии равны ее натуральной длине и расположены параллельно оси координат X, а профильная проекция – (.). Все точки такой пл имеют равные одноименные координаты Y и Z.
ПРЯМАЯ ЛИНИЯ УРОВНЯ (плу) – пл, ∥ одной из плоскостей проекций, на которую она проецируется без изменения, и проекция которой устанавливает углы наклона этой прямой к двум другим плоскостям проекций. При этом пл уровня не ∥ и не ⟂ двум другим плоскостям проекций и проецируется на эти плоскости с изменением размера длины. Делятся на: горизонтальную, фронтальную и профильную прямые линии уровня.
ГОРИЗОНТАЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (гплу) – это пл, ∥ горизонтальной плоскости проекций П1 и при этом не ∥ и не ⟂ фронтальной П2 и профильной 3 плоскостям проекций. Используется сокращенное название горизонтальное расстояние уровня, либо ее называют горизонталью и на чертеже обозначают буквой h. Так как все точки этой прямой линии равноудалены от плоскости проекций П1, то фпп прямой соответственно ∥ координатным осям X и Y. На плоскость проекций П1 горизонталь h проецируется без изменения своей длины и размеров углов наклона к плоскостям проекций П2 и П3.
ФРОНТАЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (фплу) – это пл, ∥ фронтальной плоскости проекций П2. Используется сокращенное название фронталь и на чертеже обозначают f. Так как все точки этой пл равноудалены от плоскости проекций П2, то гпп данной прямой соответственно ∥ координатным осям X и Z. На плоскость проекций П2 без искажения проецируется длина отрезка прямой f и углы наклона этой прямой линии к плоскостям проекций П1 и П2.
ПРОФИЛЬНАЯ ПРЯМАЯ ЛИНИЯ УРОВНЯ (пплу) – это пл, ∥ профильной плоскости проекций П3. Используется сокращенное название профильная пу, которая на чертеже обозначается p. Так как все точки этой прямой линии равноудалены от плоскости проекций П3, то гфп данной прямой соответственно параллельны координатным осям Y и Z. На плоскость П3 проецируются без искажения отрезок этой прямой p и углы наклона прямой к плоскостям проекций П1 и П2. Если пплу, удаляясь от наблюдателя, поднимается, то называют восходящей. Если же пплу от наблюдателя удаляется вниз, то она считается нисходящей.
ЛИНИИ НУЛЕВОГО УРОВНЯ (лну) – пл, принадлежащие плоскостям проекций. Это частный случай горизонтальных, фронтальных и профильных прямых линий уровня. Они обозначаются: h0, f0, p0. Так как данные линии находятся на поверхностях плоскостей проекций, то одна из координат (.) этих прямых равна 0. На эпюре две проекции лну конкурируют с осями координат, а третья проекция дает возможность определить нв этой прямой и углы наклона к плоскостям проекций.
СЛЕД ПРЯМОЙ ЛИНИИ (спл) – (.), в которой она пересекается с плоскостью проекций, т.е. (.), принадлежащая одновременно и прямой и плоскости проекций. Следы прямой являются (.) частного положения, в них пл переходит из одного октанта в другой. В общем случае пл может пересекать все три плоскости проекций и иметь три следа. Так как спл принадлежит плоскости проекций, одна из его координат равна 0. Различают: горизонтальный, фронтальный и профильный следы прямой.
ВЗАИМНОЕ ПРОСТРАНСТВЕННОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ ЛИНИЙ
ПЕРЕСЕКАЮЩИЕСЯ ПРЯМЫЕ ЛИНИИ (ппл) – это пл, имеющие одну общую (.). Проекция (.) пересечения прямых линий есть (.) пересечения проекций этих прямых. Проекции (.) пересечения пл на смежных плоскостях проекций лежат на одной проекционной линии связи, перпендикулярной оси координат.
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ ЛИНИИ (спл) – это пл, не пересекающиеся и не ∥ между собой, лежащие в двух ∥ плоскостях. На эпюре точки пересечения проекций этих прямых линий не лежат на одном отрезке проекционной связи. Для определения какая из изображенных на чертеже пл выше другой или ближе другой к наблюдателю анализируют положение конкурирующих (.) этих прямых.
Если через спл можно провести проецирующие плоскости, то тогда тени этих прямых будут ∥ на плоскости проекций, которой были ⟂ вводимые плоскости.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ЛИНИИ (ппл) – пл, расположенные в одной плоскости на не меняющемся расстоянии друг от друга на всем своем протяжении. ппл пересекаются только в несобственной (.). Проекции ппл на любую плоскость проекций – ∥. Особый случай представляют собой пл, ∥ одной из плоскостей проекций. Для оценки взаимного положения таких пл следует построить эпюр.
КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (кпл) – пл, расположенные в одной проецирующей плоскости, т.е. в плоскости ⟂ какой-либо плоскости проекций. На чертеже кпл проецируются в одну линию на одной из плоскостей проекций. Конкурирующими могут быть пересекающиеся или ∥ прямые, но не скрещивающиеся. В зависимости от положения проецирующей плоскости, в которой расположены пл, разделяют их на: горизонтально конкурирующие, фронтально конкурирующие и профильно конкурирующие пл.
ГОРИЗОНТАЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (гкпл) – пл, расположенные на поверхности плоскости ⟂ горизонтальной плоскости проекций П1. Горизонтальные проекции таких пл конкурируют с горизонтальным следом плоскости, которой они принадлежат.
ФРОНТАЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (фкпл) – пл, расположенные на поверхности фронтально проецирующей плоскости. Фп таких пл совмещены с фронтальным следом плоскости, которой они принадлежат.
ПРОФИЛЬНО КОНКУРИРУЮЩИЕ ПРЯМЫЕ ЛИНИИ (пкпл) – пл, расположенные на поверхности профильной проецирующей плоскости. Пп таких пл совмещены с профильным следом плоскости, которой они принадлежат.
ТЕОРЕМА ОБ ОРТОГОНАЛЬНОЙ ПРОЕКЦИИ ПРЯМОГО УГЛА: если одна из сторон прямого угла ∥ плоскости проекций, а другая ей не перпендикулярна, то прямой угол проецируется ортогонально на эту плоскость проекций без искажения, т.е. прямым углом.
Если ни одна из сторон прямого угла не является линией уровня, то необходимо преобразование чертежа, например, заменой плоскостей проекций.
Фронтальная плоскость проекции обозначается буквой какой
От направления проецируемых лучей зависит вид проекции.
В результате центрального проецирования полученное изображение всегда больше проецируемого объекта.
Полученное изображение при параллельном проецировании может быть меньше, больше или равно проецируемому объекту.
В случае параллельного прямоугольного проецирования, полученное изображение всегда равно проецируемому объекту.
Плоскости проекции в пространстве могут располагаться вертикально, горизонтально или наклонно.
Во всех вариантах есть два условия.
Во-первых, предмет необходимо расположить параллельно плоскости проекции.
Во-вторых, через каждую вершину или характерные точки проводят лучи перпендикулярно плоскости.
Плоскость, которая расположена вертикально и перпендикулярно взгляду наблюдателя, называют фронтальной и обозначают латинской буквой V.
Если необходимо спроецировать объект на фронтальную плоскость, то его необходимо расположить таким образом, чтобы длина и высота были параллельны данной плоскости.
Рассмотрите изображения детали «Шип» на фронтальной плоскости проекции на рисунке 2. Подумайте, на каком изображении форма и конструкции переданы наиболее полно?
Конечно, это изображение под буквой А. Такое изображение на фронтальной плоскости называется главным видом.
Оно дает наиболее полное представление о форме, конструкции и размерах предмета.
Для более наглядного представления детали используют две проекции: фронтальную или вид спереди, и горизонтальную – вид сверху.
Она располагается перпендикулярно к фронтальной области.
Обозначается латинской буквой H.
Плоскости пересекаются по оси Х. Ее называют осью проекции.
Проекции проецирующих лучей называют линиями проекционной связи.
Метод прямоугольного проецирования обосновал, привел в стройную систему французский инженер, учёный Гаспар Монж.
Чертеж, представленный двумя видами (спереди и сверху), называется комплексным чертежом или эпюром Монжа.
Горизонтальная проекция (вид сверху) всегда располагается четко под главным видом.
Размеры длины детали и ее элементов наносят всегда параллельно оси Х.
Надо запомнить, что на главном виде всегда наносят размеры длины и высоты детали,
А на виде сверху – длины и ширины!
Порядок нанесения следующий: сначала размеры по длине детали:
элементов, координирующие, габаритные
Затем – по высоте, только потом по ширине в том же порядке.