Как ищется площадь равнобедренного треугольника
Как посчитать площадь равнобедренного треугольника
Онлайн калькулятор
Чтобы вычислить площадь равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):
Введите их в соответствующие поля и узнаете площадь равнобедренного треугольника (S).
Как посчитать площадь равнобедренного треугольника зная длину основания и высоту
Какова площадь равнобедренного треугольника (S) если известны длина основания (b) и высота (h)?
Формула
Пример
Если основание b = 5 см, а высота h = 10 см, то:
S = ½⋅5⋅10 = 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и угол между ними (β)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и угол между ними (β)?
Формула
Пример
Если сторона а = 10 см, а ∠β = 30°, то:
S = ½⋅10 2 ⋅sin30° = ½ ⋅100⋅0.5= 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и угол между стороной и основанием (α)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и угол между стороной и основанием (α)?
Формула
Пример
Если сторона а = 10 см, а ∠α = 75°, то:
S = ½⋅10 2 ⋅sin(180-2⋅75)° = ½ ⋅100⋅0.5 = 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и длину основания (b)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и длина основания (b)?
Формула
Пример
Если сторона а = 10 см, а основание b = 5, то:
Площадь равнобедренного треугольника — формулы вычисления
Площадь равнобедренного треугольника важна для вычисления многих геометрических и математических задач. Например, определение площади любого многоугольника связано с его разделением на ряд треугольников и расчетом площади каждого из них.
Геометрическое тело, обладающее двумя равными сторонами и углами – есть частный случай простого разностороннего многоугольника.
Каждая из идентичных линий называется боковой, а третья – основанием.
Если в таком треугольнике опустить среднюю линию из его вершины на 3-ю сторону, то образовавшиеся два плоских тела будут идентичны (так как имеют все признаки подобия).
Площадь (S) фигуры с тремя углами возможно установить:
по двум сторонам и высоте;
через угол между двумя сторонами и величину одной из них;
через синус противолежащего основанию угла;
зная синус прилежащего угла и др.
Площадь равнобедренного треугольника через высоту
Вычисление площади треугольника с использованием его высоты и параметров основания – самый актуальный вариант, на базе которого строятся многие другие методы решения.
У планиметрической фигуры с двумя тождественными углами и боковыми отрезками высота может рассматриваться, как медиана и биссектриса. То есть линия, проведенная из вершины, делит планиметрический объект на два эквивалентных прямоугольных треугольника.
И общая их площадь сводится к:
b — размер основания;
Требуется рассчитать S тупоугольного равнобедренного многоугольника. Его h=3 см, а длина b = 8 см.
Вычисления выглядят следующим образом:
Площадь равнобедренного треугольника через стороны
Найти S планиметрического тела с двумя одинаковыми чертами, зная их параметры, возможно.
Для этого необходима теорема Пифагора, формулы которой видны на картинке,
и формула для отыскания S через биссектрису S = ½ * b * h.
После проведения медианы к середине 3-его отрезка, в равнобедренном треугольнике образуются 2 единообразных плоских тела с h между 2-мя катетами.
Таким образом, используя свойство сторон прямоугольного треугольника, выводим формулу, которая показана на картинке:
При высчитывание S равностороннего треугольника это выражение примет другой вид. Сравнить формулы нахождения площади равностороннего и равнобедренного треугольников можно, взглянув на картинку:
У остроугольного равнобедренного треугольника даны габариты боковины b = 3 см и базиса a = 2 см. Надлежит найти его S:
Площадь равнобедренного треугольника через синус угла
В геометрии встречаются задания по отысканию площади многоугольника с тремя схожими краями через данный угол и длину прилегающей стороны.
В этой ситуации определение размера h будет осуществляться с использованием угла, прилегающего к измеренной грани. Таким образом выводится выражение, которое хорошо иллюстрирует следующая картинка:
Посмотрим на рисунок, приведенный выше. Известно, что ∠ACB фигуры 30 градусов, а величина его боковой стороны AC = AB равняется 4 см. Требуется вычислить её S.
Формула площади равнобедренного треугольника через тангенс угла
Как правило, в планиметрии нередко встречаются задания по нахождению S треугольника, в котором определено значение стороны и угол.
Разнообразные равенства для решения задач, в том числе и нахождения S через тангенс угла, можно увидеть ниже:
Прежде всего посмотрим, как найти нам требуемую величину и какую применить формулу. Остановим свой выбор на формуле нахождения площади S по тангенсу угла.
Зная, что у нас равнобедренный треугольник, у которого углы у основания равны, найдем третий угол:
180 — 45 — 45 = 90 0 — угол OPQ.
SOPQ = 5 2 /4 * tg 45° = 25/4 * 1 = 6, 25 см 2
Вот так, используя прежде всего знания о свойствах фигур, можно получать самые разнообразные способы вычисления той величины, какая требуется в задаче.
Как найти площадь треугольника
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.
Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
Популярные единицы измерения площади:
Формула площади треугольника
Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.
Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.
Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!
Общая формула
1. Площадь треугольника через основание и высоту
, где — основание, — высота.
2. Площадь треугольника через две стороны и угол между ними
3. Площадь треугольника через описанную окружность и стороны
4. Площадь треугольника через вписанную окружность и стороны
Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:
5. Площадь треугольника по стороне и двум прилежащим углам
, где — сторона, и — прилежащие углы.
6. Формула Герона для вычисления площади треугольника
Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.
Для прямоугольного треугольника
Площадь треугольника с углом 90° по двум сторонам
Площадь треугольника по гипотенузе и острому углу
, где — гипотенуза, — любой из прилегающих острых углов.
Гипотенузой принято называть сторону, которая лежит напротив прямого угла.
Площадь прямоугольного треугольника по катету и прилежащему углу
, где — катет, — прилежащий угол.
Катетом принято называть одну из двух сторон, образующих прямой угол.
Площадь треугольника через гипотенузу и радиус вписанной окружности
, где — гипотенуза, — радиус вписанной окружности.
Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
Площадь прямоугольного треугольника по формуле Герона
Для равнобедренного треугольника
Вычисление площади через основание и высоту
, где — основание, — высота, проведенная к основанию.
Поиск площади через боковые стороны и угол между ними
, где — боковая сторона, — угол между боковыми сторонами.
Площадь равностороннего треугольника через радиус описанной окружности
, где — радиус описанной окружности.
Площадь равностороннего треугольника через радиус вписанной окружности
, где — радиус вписанной окружности.
Площадь равностороннего треугольника через сторону
Площадь равностороннего треугольника через высоту
Таблица формул нахождения площади треугольника
У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.
Площадь равнобедренного треугольника онлайн
С помощю этого онлайн калькулятора можно найти площадь равнобедренного треугольника. Для нахождения площади равнобедренного треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Площадь равнобедненного треугольника по основанию и стороне
Пусть в равнобедренном треугольнике известны основание a=BC и сторона b=AC (AC=BC) (Рис.1):
Найдем площадь треугольника. Проведем высоту h=AH. Поскольку в равнобедренном треугольнике высота являетcя также биссектрисой и медианой, то:
Применим теорему Пифагора для прямоугольного треугольника AHC:
Площадь треугольника по основанию и высоте имеет следующий вид:
Подставляя (2) в (3), получим:
Пример 1. Основание равнобедренного треугольника равна a=4.5, а боковая сторона − b=7. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (4). Подставляя значение a=5 и b=7 в (4), получим:
Ответ:
Площадь равнобедненного треугольника по боковым сторонам и углу между ними
Пусть в равнобедренном треугольнике известны боковые стороны b=c и угол между ними α (Рис.2).
Плошадь треугольника по сторонам и углу между ними вычисляется с помощью следующей формулы (см. теорему 2 статьи Площадь треугольника онлайн):
Учитывая, что b=c, получим:
Пример 2. Боковые стороны равнобедненного треугольника равны b=c=12, а угол между ними равна α=67°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (5). Подставляя значения b=12 и α=67° в (5), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и прилежащему углу
Пусть в равнобедренном треугольнике известны основание a и прилежащий угол γ (Рис.3):
Найдем площадь треугольника. Проведем высоту AH. Для прямоугольного треугольника AHC можно записать:
Формулу вычисления площади по основанию и прилежащему углу получим подставляя (6) в (3):
Пример 3. Основание равнобедненного треугольника равна a=25.4, а прилежащий угол равен γ=27°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (7). Подставляя значения a=25.4 и α=27° в (7), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и противолежащему углу
Пусть в равнобедренном треугольнике известны основание a и противолежащий угол α=∠BAC (Рис.4):
Найдем площадь треугольника. Проведем высоту AH. Для прямоугольного треугольника AHC можно записать:
Формулу вычисления площади по основанию и противолежащему углу получим подставляя (8) в (3):
Пример 4. Основание равнобедненного треугольника равна a=17, а прилежащий угол равен γ=21.4°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (9). Подставляя значения a=17 и α=21.4° в (9), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и высоте
Пусть в равнобедренном треугольнике известны основание a и высота h (Рис.5):
Формула для вычисления площади треугольника имеет вид (3):
Пример 5. Основание равнобедненного треугольника равна a=18, а высота равна h=31. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (10). Подставляя значения a=18 и h=31 в (10), получим:
Ответ:
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.