Как искать период тригонометрической функции
Узнать ещё
Знание — сила. Познавательная информация
Как найти период функции
Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции
где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.
Найти период функции:
Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции
А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то
А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции
А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть
Уроки математики и физики для школьников и родителей
суббота, 4 сентября 2021 г.
Урок 5. Периодичность тригонометрических функций
Из этого определения сразу следует, что если Т – период функции
– также периоды функций. Значит у периодической функции бесконечно много периодов.
Чаще всего (но не всегда) среди множества положительных периодов функции можно найти наименьший. Его называют основным периодом .
График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.
у = х – [х] , где [х] – целая часть числа. Если к произвольному значение аргумента этой функции добавить 1 , то значение функции от этого не изменится :
Следовательно, при любом значении х
sin (α + 360 ° ) = sin α
Таким образом, функции sin α и cos α от прибавления к аргументу α одного полного оборота ( 2π или 360 ° ) не меняют своих значений.
где k – любое целое число.
Следовательно, функции sin α и cos α – периодические.
Наименьшее положительное число, от прибавления которого к любому допустимому значению аргумента не изменяется значение функции, называется периодом функции.
В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным радиусом ОМ единичной окружности.
отсюда следует, что значения tg α и с tg α не изменяются, если к углу α прибавить любое число полуоборотов:
где k – любое целое число.
вычисляются по формуле
равен наименьшему числу, при делении которого на T 1 и T 2 получаются целые числа.
Найти период функции
не существует, так как такого числа, при делении которого на 2π и на 2 получались бы целые числа, нет.
Периода не существует.
Доказать следующее утверждение :
Так как тангенс – периодическая функция с минимальным периодом 20 ∙ 180 ° , то получим :
Доказать следующее утверждение :
Так как косинус – чётная и периодическая функция с минимальным периодом 2π , то получим :
сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.
Доказать следующее утверждение :
Так как синус – нечётная и периодическая функция с минимальным периодом 20 ∙ 360 ° , то получим :
Найти основной период функции
Пусть Т основной период функции, тогда:
так как 2 πk период синуса, то получим :
sin (7х + 7 t ) = sin (7х + 2 πk ),
Найти основной период функции
Пусть Т основной период функции, тогда:
со s 0,3х = со s 0,3(х + t ) = со s (0,3х + 0,3 t )
так как 2 πk период косинуса, то получим :
Найти период функции :
y = 5 sin 2 x + 2 ctg 3х.
Наименьшее число, при делении которого на
Найти период функции :
Находим периоды слагаемых. Период функции
Очевидно, что период заданной функции равен
Найти период функции :
Периода у заданной функции не существует, так как нет такого числа, при делении которого на 2 и на π одновременно получались бы целые числа.
Найти период функции :
Приведём к общему знаменателю периоды :
Тогда наименьшее общее кратное (НОК) будет :
Теперь найдём период заданной функции :
Как найти период тригонометрической функции
Тригонометрические функции периодичны, то есть повторяются через определенный период. Благодаря этому достаточно исследовать функцию на этом промежутке и распространить найденные свойства на все остальные периоды.
Если вам дано простое выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-либо число, а она сама не возведена в какую-либо степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec смело ставьте период 2П, а если в уравнении есть tg, ctg – то П. Например, для функции у=2 sinх+5 период будет равен 2П.
Если угол х под знаком тригонометрической функции умножен на какое-либо число, то, чтобы найти период данной функции, разделите стандартный период на это число. Например, вам дана функция у= sin 5х. Стандартный период для синуса – 2П, разделив его на 5, вы получите 2П/5 – это и есть искомый период данного выражения.
Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для четной степени уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в любой степени периодичны П.
Если вам дано уравнение, содержащее произведение или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих периодов. Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.
Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет ответ задачи.
Тригонометрические функции. Понятие периодичности.
Когда точно известно, какой именно угол принимается за единицу измерения, можно говорить об одинаковости масштабов на обеих осях. Тогда число х, измеряющее угол, и число у, выражающее его синус, можно изобразить отрезками, пропорциональными этим числам.
При построении графиков тригонометрических функций обычно принято за единицу измерения угла использовать радиан. Тогда функция у = sin x (под х подразумевается наименование «радианов») изображается графиком, приведенным ниже (масштабы на осях одинаковы). Если за единицу измерения угла принять полрадиана, то, сохраняя те же масштабы, график растянется вдоль оси абсцисс в отношении 2:1.
Линия, являющаяся графиком функции у = sin x, называется синусоидой.
При смещении графика синуса или косинуса на отрезок 2π (вправо или влево) он (график) совмещается сам с собой.
Таким образом, можно сказать, что если график некоторой функции у = f(x) при смещении его на некоторый отрезок вдоль оси абсцисс совмещается сам с собой, то функция называется периодической.
Периодом функции f(x) называется число р, которое измеряет отрезок на оси. Это словесное определение кратко выражается формулой:
Все тригонометрические функции имеют период 2π.
Функции тангенса и котангенса у = tgx и у = ctg х имеют сверх того период π (так как tg (х ± k π) = tg х).
График тангенса у = tg х показан на рисунке.
На рисунке ниже представлен график функции котангенс у = ctg х.
График тангенса неограниченно приближается к прямым, которые параллельны оси ординат и отстоят от нее на расстоянии равном ± π/2, ± 3(π/2), ± 5(π/2) и т.п., но не достигают этих прямых.
Аналогичную роль для графика функции котангенса играют прямые, отстоящие от оси OY на ± π, ±2π, ±3π, и т. д., собственно и сама ось OY.
Как определить периодичность функции
Если F(x) — функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.
Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.
Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.
Если F(x) — периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.
Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.
Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.
Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.