Как измерять углы без транспортира

Чем заменить транспортир

Как измерять углы без транспортира. . Как измерять углы без транспортира фото. Как измерять углы без транспортира-. картинка Как измерять углы без транспортира. картинка

Транспортир в домашних условиях можно заменить на:

Чем можно заменить транспортирОписание
Лист бумагиИдеальный вариант для определения углов 30, 45, 60 градусов. У листика все углы по 90 градусов, если его свернуть вдвое, получится 45. Если его разделить на три части можно получить 30 и 60 градусов.

Соответственно если 30 сложить пополам получится 15 градусов. Также можно получить и угол в 180 градусов. В других случаях придется использовать транспортир.Бумага в клеточкуБез особого труда на листике в клеточку можно построить стандартные углы. Затем нужно приложить подготовленные из листика заготовки к заданному углу и определить его.Наручные часыТакой метод может иметь небольшую погрешность, однако он идеально подходит для определения угла в домашних условиях без транспортира.Бумажный трафаретМожно скачать из интернета подготовленный шаблон с углами и распечатать его. Такой трафарет будет идеальной заменой транспортиру. Чтобы удобней с ним работать, трафарет лучше приклеить к картонке.

Довольно часто у людей возникает вопрос, чем можно заменить транспортир в домашних условиях, поскольку он не всегда оказывается под рукой.

Существует несколько альтернатив, которые позволяют сделать расчеты, однако, нужно учитывать, что все методы могут иметь погрешности, поэтому лучше воспользоваться транспортиром.

Определение угла с помощью листа бумаги

Определить угол в 90, 30, 60 и 45 градусов достаточно просто. Для этого нужно воспользоваться обычным листом бумаги, который уже имеет прямые углы.

Для определения других углов потребуется транспортир.

Листочек в клеточку

На листике в клеточку легко можно сделать замеры тех же стандартных углов, что и в предыдущем варианте.

Полученные углы нужно вырезать и сравнить с заданным углом. Обычно, после прикладывания заготовок, получается, визуально определить примерные показатели.

Механические часы

Циферблат часов будет отличной альтернативой транспортиру. Возможно, такие замеры будут иметь небольшую погрешность, поэтому его лучше использовать только для домашних целей, а не произведения каких-то серьезных измерений.

Часы имеют 60 одинаковых делений, каждое равно 6 градусам. Соответственно половина деления – это 3 градуса, а 1/3 равна двум.

Если получиться поставить часы точно на точку, с которой начинается угол, погрешность окажется незначительной.

Найди идеальную альтернативу транспортиру довольно сложно, однако нет ничего невозможного. Поэтому можно воспользоваться простыми рекомендациями, которые помогут определить необходимый угол.

Но нужно учитывать, что каждый метод имеет свои особенности и не всегда поможет узнать точные цифры. Самой простой заменой транспортиру является подготовленный бумажный трафарет, однако его не всегда есть возможность распечатать.

Источник

Объясняем ребенку на пальцах одной руки, сколько градусов в угле

Метки

Как хотя бы примерно определить, сколько градусов в угле, если под рукой нет ни транспортира, ни угольника? «Так Просто!» знает остроумный способ и просто не может не поделиться им с читателями.

Сколько градусов в угле

Общепринятой единицей измерения плоских углов является градус. Почему математики древности выбрали именно такую единицу и почему в окружности 360 градусов, а не, скажем, 1000, точно неизвестно.

Одна из гипотез усматривает тут связь с тем, что в году приблизительно 360 дней. Другая гласит, что шумеры выбрали число 360, основываясь на своей шестидесятеричной системе счисления.

Так или иначе, а углы присутствуют не только на страницах учебников, но и повсеместно окружают нас в реальной жизни. Прямой угол легко найти в очертаниях зданий, изгибах мебели и каждом печатном листе.

Как измерять углы без транспортира. 2. Как измерять углы без транспортира фото. Как измерять углы без транспортира-2. картинка Как измерять углы без транспортира. картинка 2

Без угла в 45 градусов ни один столяр не смастерит простейшую рамку. Угол в 60 градусов требуется для построения равносторонних треугольников. Угол 30 градусов используется редко, но помогает получить угол в 120 градусов, необходимый для построения правильного шестиугольника.

Измеряем угол без транспортира

При наличии транспортира всё просто. Размести его центр в вершине угла, а основание совмести с одной из сторон. Проследи за второй стороной угла. В том месте, где она пересечет дугу транспортира, и будет указана величина угла в градусах.

Как измерять углы без транспортира. 3. Как измерять углы без транспортира фото. Как измерять углы без транспортира-3. картинка Как измерять углы без транспортира. картинка 3

Без транспортира под рукой, как обычно и бывает, задача усложняется. Но смекалка выручит нас и здесь. Вытяни руку ладонью вверх и максимально расставь пальцы.

Как измерять углы без транспортира. 4. Как измерять углы без транспортира фото. Как измерять углы без транспортира-4. картинка Как измерять углы без транспортира. картинка 4

Следи за тем, чтобы большой палец находился перпендикулярно мизинцу. Тогда, если мизинец указывает на 0 градусов, то безымянный будет указывать на 30, средний на 45, указательный на 60, а большой на 90 градусов.

Строим углы в 90, 60 и 30 градусов без транспортира

Если нужен угол в 30, 60, 90 градусов, а транспортира или шаблона под рукой нет, помогут эти простые способы. Чтобы получить точный угол в 90 градусов, построй Пифагоров треугольник со сторонами, кратными 3,4,5.

Как измерять углы без транспортира. 6. Как измерять углы без транспортира фото. Как измерять углы без транспортира-6. картинка Как измерять углы без транспортира. картинка 6

Для этого, например, начерти отрезок длиной 5 см и проведи из его концов дуги с радиусами 3 и 4 см. Теперь соедини точку их пересечения с концами отрезка. Получится прямоугольный треугольник и угол, расположенный напротив гипотенузы, будет составлять ровно 90 градусов.

Когда уже есть прямой угол, легко получить углы в 30 и 60 градусов поможет магическое число 173 (его хорошо бы запомнить). Отложи по одной стороне прямого угла отрезок в 100 мм, а по другой — 173. Соедини их концы. Ты получишь шаблон с углами 90, 60 и 30 градусов!

Источник

Как найти угол 90 градусов с помощью рулетки без дополнительных приспособлений

Как измерять углы без транспортира. %D0%BC 44. Как измерять углы без транспортира фото. Как измерять углы без транспортира-%D0%BC 44. картинка Как измерять углы без транспортира. картинка %D0%BC 44

Сегодня на строительном рынке измерительные инструменты представлены в широком ассортименте от линейки до лазерных установок. Рассмотрим способы, как найти угол 90 градусов с помощью рулетки без дополнительных приспособлений кроме калькулятора и карандаша. Ознакомимся с тремя способами, которые позволяют решить задачу без допущения погрешностей. Читайте до конца и Вы узнаете, как можно по тем же методикам выстроить угол в 45 или 30 градусов.

Как измерять углы без транспортира. 1 62. Как измерять углы без транспортира фото. Как измерять углы без транспортира-1 62. картинка Как измерять углы без транспортира. картинка 1 62Кухонный гарнитур с разворотом в 90 градусов

Прямой угол в интерьере

В большинстве своем помещения представлены 4 стенами, полом и потолком. Здесь практически все смежные углы должны быть равны 90 градусам, если важна строгая геометрия. Однако, как правило, выводятся они только в двух случаях: под мебель и ванну. Если это момент упустить, то визуально искривления будут бросаться в глаза.

Способы определения разворота

Раньше распространенным решением как вывести угол 90 градусов, например, на фундаменте был обычный строительный уголок. Главное, чтобы он был проверен и соответствовал 90 градусам. Сегодня профессионалы для упрощения процесса и ускорения монтажных работ пользуются лазерными уровнями. Третий вариант – применение обычной измерительной рулетки.

Как измерять углы без транспортира. 2 52. Как измерять углы без транспортира фото. Как измерять углы без транспортира-2 52. картинка Как измерять углы без транспортира. картинка 2 52Обычная строительная рулетка

Теорема Пифагора

С этой доказанной теоремой знаком каждый, кто учился в школе. Она применима только к треугольникам, в котором один из углов обязательно прямой. Прилегающие к нему стороны – катеты a и b, соединительный отрезок – гипотенуза (с). Формула выглядит так: a²+b²=c².

Удобство использования такого способа как найти прямой угол при строительстве в том, что наносить разметку можно в любом по площади помещении. Здесь даже допустимо наличие посторонних предметов. Главное, чтобы был доступ к углу и стенам, можно было свободно протянуть соединительную гипотенузу. Дополнительно понадобится только калькулятор, чтобы быстро произвести нужные вычисления.

Египетский треугольник

Золотой или Египетский треугольник – это фигура с прямым углом, у которой стороны равны 3, 4 и 5 частям. Удобство здесь заключается в том, что не нужно возводить параметры в квадратную степень и извлекать корни. Достаточно принять за часть ту или иную условную единицу. Это может быть как 1 см, так и 10 метров, что особенно удобно для решения как вывести угол 90 градусов на стенах из штукатурки.

Если имеются сомнения в справедливости утверждения про угол в 90 градусов, то можно его проверить с помощью теоремы Пифагора: 3*3+4*4= 5*5 или 9+16=25. Остается только начать применять эту методику на практике.

Равнобедренный треугольник

Здесь рассматривается для удобства формирования угла 90 градусов с помощью рулетки фигура с двумя сторонами, которые равны 100 см. Если между ними прямой разворот, то длина основы составит 141,4 см. Актуален такой подход в строительстве потому, что при увеличении метровых ориентиров в 2, 3 и более раз разница между размерами соединительного отрезка будет идентичной. То есть в прямоугольном равнобедренном треугольнике справедливы такие равенства:

Если проверить эти утверждения, то гипотенуза или основа равнобедренного треугольника с верхним прямым углом будет при округлении действительно равна 141,4 (141,421356…). С одной стороны – это простой и верный способ как проверить угол 90 градусов рулеткой по нанесенной разметке. Достаточно отмерять метровые участки и сделать только одно умножение 141,4 на число метров. Один только недостаток здесь все же есть. Если в квартире или доме погрешность будет несущественной из-за малых габаритов, то на крупных объектах отклонение из-за неточной гипотенузы может стать заметным.

Углы в 30 и 45 градусов

Выбрав один из способов как вычислить угол 90 градусов рулеткой несложно будет сформировать три варианта острых углов. 45 градусов получается, если это равнобедренный треугольник. Для 30 градусов нужно протянуть гипотенузу, которая будет равна двум коротким катетам. Здесь между ними тогда остается угол в 60 градусов.

Как измерять углы без транспортира. 5 47. Как измерять углы без транспортира фото. Как измерять углы без транспортира-5 47. картинка Как измерять углы без транспортира. картинка 5 47Прямоугольный треугольник с углами в 30 и 60 градусов

О главном

В интерьере часто приходится выводить прямые углы под мебель или сантехническое оборудование.

С помощью рулетки можно проверить разворот в 90 градусов тремя способами: стороны равны 3/4/5 частей, если между метровыми стенками соединительный отрезок составляет 141,4 см, применяя теорему Пифагора.

Также рулетки достаточно для формирования трех углов в 30, 45 и 60 градусов.

Дополнительно может понадобиться только калькулятор и карандаш для нанесения разметки.

Источник

Научно-исследовательская работа «Измеряем углы без транспортира»

Научно-исследовательская работа «Измеряем без транспортира»

Просмотр содержимого документа
«Измеряем углы без транспортира»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА с. РУССКИЙ КАМЕШКИР

(МБОУ СОШ с. Русский Камешкир)

Измерение углов без транспортира

Работу выполнила ученица 6 Б класса

Научный руководитель: Скосырева Лилия Васильевна

3. Обзор литературы по данной теме

7. Используемые ресурсы

Объект исследования:
углы с различными градусными мерами; инструменты для измерения углов.

Предмет исследования:
процесс измерения углов без использования транспортира.
Гипотеза:
можно предположить, что существуют углы разных градусных мер, которые

можно измерить без применения транспортира, а только пользуясь линейкой без мерных делений, клетчатой бумагой и другими подручными материалами


Методы исследования:
поисковый метод с использованием научной и учебной литературы, а также поиск необходимой информации в сети Интернет;
— графическое моделирование, анализ и классификация полученных результатов.

Целью работы:
является знакомство с инструментами для измерения углов, исследование метода измерения углов заданной градусной меры без использования транспортира.

1. Провести практическую работу по построению острых углов заданной градусной меры (от 10° до 80°, кратных 10) и выявлению «контрольных» точек – узлов для лучей каждого угла.

2. Проанализировать полученные результаты и систематизировать их

3. Определить группы задач, которые можно решить с помощью исследованного метода построения углов.

4. Сделать вывод о подтверждении или опровержении выдвинутой гипотезы.

в курсе геометрии при решении задач часто приходится строить иллюстративные чертежи различных фигур по заданному условию. Владение методом построения углов на клетчатой бумаге позволяет чертить заданные углы с достаточной точностью, не требует наличия транспортира и экономит время на выполнение чертежа.

2. Построение углов: история и современность.

3. Практическая часть. Построение углов без помощи транспортира.

1) Построение угла 45° без помощи транспортира.

2) Построение острых углов с градусной мерой, кратной 10° без помощи транспортира.

3) Построение тупых углов с градусной мерой, кратной 10°, от 100° до 170°

без помощи транспортира.

4) Построение углов с помощью угольников.

5) Построение углов 30°, 45°, 60°, 90° в практической жизни.

6) Измерение углов по пальцам рук.

4. Выводы и заключение.

Увлечение отдельной областью математики часто начинается с размышления над какой-то особенно понравившейся задачей. При изучении в 5 классе на уроках математики темы «Построение угла заданной величины», мы научились строить углы с помощью транспортира.

И сразу обнаружили, что некоторые углы гораздо быстрее и более точно можно начертить в тетрадке с помощью одной только линейки.

Именно тогда я и заинтересовалась вопросом, а можно ли построить и другие углы, используя только клетчатую бумагу и линейку?

Так появилась моя исследовательская работа «Строим углов без транспортира».

Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на листке бумаги, расчерченном на одинаковые квадратики?

Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны.

Своё исследование я решила начать с изучения ответа на вопрос, как решались задачи на построение углов, начиная с древних времен и до сегодняшнего времени.

2. ПОСТРОЕНИЕ УГЛОВ: ИСТОРИЯ И СОВРЕМЕННОСТЬ

Понятие градуса и появление первых инструментов для измерения углов связывают с развитием цивилизации в древнем Вавилоне, хотя само слово градус имеет латинское происхождение (градус–от лат. gradus- “шаг, ступень”). Градус получится, если, разделить окружность на 360 частей.

Возникает вопрос – а почему древние вавилоняне делили именно на 360 частей.

Дело в то, что в Вавилоне была принята шестидесятиричная система счисления. Более того, число 60 считалось священным. Поэтому все вычисления были связаны с числом 60.

История не сохранила имя ученого, который изобрел транспортир – возможно в древности этот инструмент имел совсем другое название.

Современное название происходит от французского слова ”ТRANSPORTER”, что означает “переносить”.

Первые задачи на построение углов возникли в глубокой древности. Возникли они из хозяйственных потребностей человека. Уже древними архитекторами и землемерами приходилось решать простейшие задачи на построение, связанные с их профессией.

Первые греческие ученые, которые занимались решением геометрических задач на

построение, были: Фалес Милетский (624 – 547 гг. до н.э.), Пифагор (ок. 580 – 500 гг. до н.э.), Платон (427 – 347 гг. до н.э.).

Самые первые задачи на построение, по-видимому, решались непосредственно на

местности и заключались в проведении прямых линий и построения прямого угла.

К задачам на построение прибегали древние инженеры, когда составляли рабочий чертеж того или иного сооружения и решали вопросы, связанные с отысканием красивых геометрических форм сооружения и его наибольшей вместимости.

Задачи на построение помогали людям в их хозяйственной жизни, их решения формулировались в виде ‘практических правил», исходя из наглядных соображений.

Именно эти задачи и были основой возникновения наглядной геометрии, нашедшей довольно широкое развитие у древних народов Египта, Вавилона, Индии и др.

Платон и его ученики считали построение геометрическим, если оно выполнилось при помощи циркуля и линейки, то есть путем проведения окружностей и прямых линий. Если же в процессе построения использовались другие чертежные инструменты, например транспортир, то построение не считалось геометрическим.

Древние греки вслед за Платоном стремились к геометрическим построениям и считали их идеалом в геометрии.

Но древние ученые производили измерения не только транспортиром – ведь этот

инструмент был неудобен для измерений на местности и решения задач прикладного

характера. А именно прикладные задачи и являлись главным предметом интереса древних геометров.

ИКак измерять углы без транспортира. s1167295 0 1. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 1. картинка Как измерять углы без транспортира. картинка s1167295 0 1зобретение первого инструмента, позволяющего измерять углы на местности,

связывают с именем древнегреческого ученого Герона Александрийского (I в. до н.э). Он описал инструмент “диоптр”, позволяющий измерять углы на местности и решать множество прикладных задач.

НКак измерять углы без транспортира. s1167295 0 2. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 2. картинка Как измерять углы без транспортира. картинка s1167295 0 2о прогресс не стоит на месте и в Х VII веке был изобретен прибор нивелир, а в следующем веке английским механиком Джессе Рамсденом был изобретен другой прибор – теодолит.

Как измерять углы без транспортира. s1167295 0 3. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 3. картинка Как измерять углы без транспортира. картинка s1167295 0 3

Сегодня теодолит – сложный прибор. Многие работы (в том числе и строительство) требуют предварительной консультации геодезистов измерений с помощью теодолита.

Однако усовершенствование инструментов для измерения углов связано не только с

проведением строительных работ. С древнейших времен люди путешествовали, познавая окружающий мир. Путешественниками необходимо было уметь ориентироваться в пространстве. На долгие века основным ориентиром путешественников стали звезды.

Как измерять углы без транспортира. s1167295 0 5. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 5. картинка Как измерять углы без транспортира. картинка s1167295 0 5

В Как измерять углы без транспортира. s1167295 0 6. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 6. картинка Как измерять углы без транспортира. картинка s1167295 0 6настоящее время широко используются современные приборы для измерения углов на местности.

Геодезический инструмент для измерения углов при съёмках на местности, специальный вид компаса- буссоль.

Как измерять углы без транспортира. s1167295 0 7. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 7. картинка Как измерять углы без транспортира. картинка s1167295 0 7

Простейший геодезический инструмент, служащий для измерения углов наклона местности с точностью до десятых долей градуса- эклиметр.

Первый в мире транспортир

НКак измерять углы без транспортира. s1167295 0 8. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 8. картинка Как измерять углы без транспортира. картинка s1167295 0 8еобычный объект, который мы можем наблюдать на фото, был найден в гробнице древнеегипетского архитектора Ха (Kha). Без малого столетие прошло с тех пор, как историки впервые задались вопросом о предназначении странного артефакта.

Недавно предположение о возможном способе использования объекта выдвинула ученая-физик. Гипотеза, предложенная Амелией Спаравигной (Amelia Sparavigna) из Туринского политехнического университета (Turin Polytechnic), базируется на числовых отметках, якобы присутствующих на поверхности артефакта.

Архитектор Ха известен тем, что во времена 18-той династии (приблизительно 1400 год до нашей эры) он был задействован в строительстве гробницы фараона. Собственную же усыпальницу Ха нашли 1906 году неподалеку от Долины Царей — это открытие принадлежит археологу Эрнесто Скьяпарелли (Ernesto Schiaparelli). Среди вещей, когда-то принадлежащих архитектору, удалось идентифицировать измерительные пруты длиной в локоть (45 см), инструмент, напоминающий современный угольник, а также неизвестное полое деревянное орудие. По мнению Скьяпарелли, это был инструмент для выставления уровня.

Как измерять углы без транспортира. s1167295 0 9. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 9. картинка Как измерять углы без транспортира. картинка s1167295 0 9

Детально осмотрев старую находку, Амелия Спаравигна пришла к выводу, что на самом деле этот последний объект служил в качестве транспортира — в пользу такой версии свидетельствуют 16 лепестков, расположенных по окружности и находящихся на равном расстоянии друг от друга. Эти лепестки окружены круглым узором, имеющим 36 углов. Очевидно, продолговатая ровная часть инструмента устанавливалась на поверхность, после чего, с помощью уровня, можно было определить угол наклона того или иного объекта.

Числа, присутствующие на находке, якобы соответствовали двум измерительным системам, применявшимся в древнем Египте. Первая, внутренняя часть узора, соответствует шестнадцатичной счетной системе (соответствует современной десятичной). Вторая отображает 36 созвездий, известных египтянам.

Полукруговые (180 градусов) — наиболее простые и древние транспортиры.

Круговые (360 градусов).

Геодезические, которые бывают двух типов: ТГ-А — для построения и измерения углов на планах и картах; ТГ-Б — для нанесения точек на чертежной основе по известным углам и расстояниям. Цена деления угломерной шкалы — 0,5°, прямолинейной — 1 миллиметр.

Улучшенные типы транспортиров, которые необходимы для более точных построений и измерений. Например, существуют специальные транспортиры с прозрачной линейкой с угломерным нониусом, которая вращается вокруг центра.

Транспортиры изготавливаются из стали, пластмассы, дерева и других материалов. Точность транспортира прямо пропорциональна его размеру (чем больше транспортир, тем меньше цена одного деления).

Как измерять углы без транспортира. s1167295 0 10. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 10. картинка Как измерять углы без транспортира. картинка s1167295 0 10Как измерять углы без транспортира. s1167295 0 11. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 11. картинка Как измерять углы без транспортира. картинка s1167295 0 11Как измерять углы без транспортира. s1167295 0 12. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 12. картинка Как измерять углы без транспортира. картинка s1167295 0 12

Полукруговой транспортир Круговой транспортир Геодезический транспортир

Как измерять углы без транспортира. s1167295 0 13. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 13. картинка Как измерять углы без транспортира. картинка s1167295 0 13

Как измерять углы без транспортира. s1167295 0 14. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 14. картинка Как измерять углы без транспортира. картинка s1167295 0 14

Угломер электронный Угломер строительный

Вот такая история возникновения различных приборов для измерения углов не только на чертежах, но и на любой местности, включая даже небесное пространство!

Таким образом, я выяснила, что на современном этапе существует множество приборов, позволяющих измерять и строить углы с различной степенью точности, которые применяются людьми самых разнообразных профессий, а при изучении курса геометрии в школе для построения углов заданной градусной меры в основном используется циркуль, линейка и транспортир.

1)Построение угла 45° без помощи транспортира.

Угол 45 градусов в геометрии встречается часто.

Рассмотрим, как легко можно построить угол 45 градусов без транспортира, пользуясь только линейкой, карандашом и клеточками тетради.

Легче всего строить прямой угол.

Как измерять углы без транспортира. s1167295 0 16. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 16. картинка Как измерять углы без транспортира. картинка s1167295 0 16

Для этого из одной точки по клеточкам строим горизонтальный и вертикальный лучи.

Градусная мера прямого угла — 90 градусов. 45 градусов — половина от 90º. Значит, чтобы построить угол 45 градусов, нужно взять половину прямого угла.

Сделать это очень легко. Выбираем вершину угла на пересечении клеточек. Одну сторону угла, например, горизонтальный луч, проводим с помощью линейки по клеточкам. Для построения второй стороны угла 45º каждую клеточку делим по диагонали (отмечаем несколько точек):

Как измерять углы без транспортира. s1167295 0 17. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 17. картинка Как измерять углы без транспортира. картинка s1167295 0 17

Затем с помощью линейки и карандаша через эти точки проводим второй луч. Получили угол 45 градусов:


Как измерять углы без транспортира. s1167295 0 18. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 18. картинка Как измерять углы без транспортира. картинка s1167295 0 18

2)Построение острых углов с градусной мерой, кратной 10° без помощи транспортира.

Для проведения исследования я на листке клетчатой бумаги построила острые углы,

начиная от 10° до 80°, с интервалом в 10°. Центр угла был расположен в узле клеток. Один из лучей, образующих угол, провела горизонтально слева направо.

Далее с помощью транспортира начертила лучи для всех исследуемых углов.

Если второй луч проходил точно через узел клеток, то информацию об этом угле заносила в таблицу.

Положение «контрольного» узла относительно вершины данного угла отмечалось следующим образом: сначала указывалось количество целых клеток вверх, затем вправо.

Как измерять углы без транспортира. s1167295 0 19. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 19. картинка Как измерять углы без транспортира. картинка s1167295 0 19

В результате получилась такая таблица:

Проанализировав данные таблицы для построения углов, можно заметить, что для углов

от 20° до 70° количество клеток вверх на единицу превышает количество десятков в

градусной мере угла. Причем сумма клеток вверх и вправо для всех этих углов равна 11.

То есть, чтобы знать все «контрольные» узлы, полученные в таблице достаточно

запомнить только точку для угла в 10° –(1;6), и для угла 80°- ей служит противоположная(6;1).

А все остальные «контрольные» точки лучей (для углов от 20° до 70°, кратных 10)

подчиняются несложному правилу: «Если прибавить к числу десятков искомого угла единицу, то получим количество клеток по вертикали. Если это число отнять от 11, то получим количество клеток по горизонтали от вершины угла.»

Например, для построения угла в 70° нужно отступить 8 (7+1) клеток по вертикали и 3(11-8) клетки по горизонтали в сторону первого луча.

Как измерять углы без транспортира. s1167295 0 20. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 20. картинка Как измерять углы без транспортира. картинка s1167295 0 20

Анализ данных в полученной таблице еще раз убеждает нас в существовании красоты, закона симметрии и порядка в науке математике.

3)Построение тупых углов с градусной мерой, кратной 10°, от 100° до 170° без помощи транспортира.

Исследованный метод построения углов позволяет решать следующую геометрическую задачу: построение тупых углов от 100° до 170° с шагом в 10°.

Смежные углы имеют общий луч. Поэтому для построения тупых углов можно

пользоваться «контрольной» точкой смежного ему острого угла из таблицы. Только

отсчет клеток по горизонтали выбирается в противоположном горизонтальному лучу

направлении (в нашем случае влево).

Как измерять углы без транспортира. s1167295 0 21. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 21. картинка Как измерять углы без транспортира. картинка s1167295 0 21

4)Построение углов с помощью угольников.

Я исследовала чертёжные инструменты – угольники.

Угольник — линейка в форме прямоугольного треугольника, как правило, с миллиметровой шкалой и с пустотой в форме уменьшенного подобного треугольника внутри.

Как измерять углы без транспортира. s1167295 0 22. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 22. картинка Как измерять углы без транспортира. картинка s1167295 0 22

Наиболее распространены угольники двух видов: с острыми углами по 30 и 60 градусов и равнобедренными с одинаковыми острыми углами по 45 градусов. Угольники используются в черчении для построения некоторых углов без помощи транспортира.

При использовании двух угольников можно построить больший набор углов, прикладывая их друг к другу, например, угол в 75 градусов (30+45), 120 градусов (90+30) и т.д. Покажу, как это сделать…

2) 135 градусов: построить прямой угол, затем от него отложить 45 градусов.
3) 25 градусов: построить угол в 60 градусов, затем от луча внутри угла отложить 45 градусов.

С помощью угольников можно построить углы 105◦, 15◦ и другие.

105= 60+45, 15=60-45 и так далее.

Как измерять углы без транспортира. s1167295 0 23. Как измерять углы без транспортира фото. Как измерять углы без транспортира-s1167295 0 23. картинка Как измерять углы без транспортира. картинка s1167295 0 23

5)Построение углов 30°, 45°, 60°, 90° в практической жизни.

Часто домашнему мастеру необходимо срочно произвести какое либо измерение или сделать разметку под определенным углом, а под рукой нет либо угольника, либо транспортира. В этом случае его выручат несколько простых правил.

А если нет даже печатного издания или необходимо построить угол на местности, например при разметке фундамента или листа фанеры с неровными краями? В этом случае нам поможет правило золотого (или египетского) треугольника.

Золотым (или египетским, или Пифагоровым) треугольником называется треугольник со сторонами, которые соотносятся друг с другом как 5:4:3. По теореме Пифагора, у прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Т.е. 5х5 = 4х4 + 3х3. 25=16+9 и это неоспоримо.

Такие углы обычно применяют при изготовлении прямоугольных рамок. Материал из которого делается рамка (багет) пилится под углом 45 градусов и стыкуется. Если под рукой нет стусла или транспортира, получить шаблон угла в 45 градусов можно следующим образом. Необходимо взять лист писчей бумаги или любого печатного издания и согнуть его так, что бы линия сгиба проходила точно через угол, а края загнутого листа совпадали. Получившийся угол и будет равен 45 градусам.

Угол 30 и 60 градусов.

Угол в 60 градусов требуется для построения равносторонних треугольников. Например, вам надо напилить такие треугольники для декоративных работ или точно установить силовой укос. Угол в 30 градусов редко применяется в чистом виде. Однако с его помощью (и с помощью угла в 90 градусов) строится угол 120 градусов. А это угол, необходимый для построения равносторонних шестиугольников, фигуры весьма популярной у столяров.

Для построения весьма точного шаблона этих углов в любой момент необходимо запомнить константу (число) 173. Они вытекает из соотношений синусов и косинусов этих углов.

6)Измерение углов по пальцам рук.

Угол между большим и безымянным пальцами равен 90 гр.

Угол между большим и указательным пальцами равен 45 гр.

Угол между безымянным и средним пальцами равен 22.5 гр.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *