ΠΠ°ΠΊ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ»Π³Π΅Π±ΡΠ°. Π£ΡΠΎΠΊ 5. ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠ΅ Π²ΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ βΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉβ.
ΠΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ. ΠΠΎΠ΄ΠΏΠΈΡΠΈΡΡ!
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ:
ΠΠ΅ΠΊΠ°ΡΡΠΎΠ²Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ β ΡΡΠΎ Π΄Π²Π΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅, ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠΈΠ΅ΡΡ Π² ΡΠΎΡΠΊΠ΅, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΎΡΡΡΠ΅ΡΠ° Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ .
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠΈ β ΠΏΡΡΠΌΡΠ΅, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΡ Π°Π±ΡΡΠΈΡΡ (ΠΎΡΡ x ) β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ ΠΎΡΡ.
ΠΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΠΎΡΡ y ) β Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ ΠΎΡΡ.
Π€ΡΠ½ΠΊΡΠΈΡ
ΠΡΡΠΌΠ°Ρ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = a x + b Π³Π΄Π΅ a ΠΈ b β Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² a ΠΈ b :
ΠΠ°ΡΠ°Π±ΠΎΠ»Π°
ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π°Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ Π² ΡΠΎΠΌ, ΡΡΠΎ Ρ Π½Π΅Ρ Π΅ΡΡΡ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ.
ΠΡΠΈΠΌΠΏΡΠΎΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ β ΠΏΡΡΠΌΡΠ΅, ΠΊ ΠΊΠΎΡΠΎΡΡΠΌ ΠΎΠ½Π° ΡΡΡΠ΅ΠΌΠΈΡΡΡ, ΡΡ ΠΎΠ΄Ρ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ.
ΠΡΡ x β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ° Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ
ΠΡΡ y β Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ° Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π·Π΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠ½ΠΊΡΠΈΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ.
0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1.png 346w,/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1-150×150.png 150w,/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1-300×300.png 300w,/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1-176×176.png 176w,/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°-1.png»>
ΠΡΠ»ΠΈ k 0, Π²Π΅ΡΠ²ΠΈ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ ΡΠ΅ΡΠ΅Π· II ΠΈ IV ΡΠ΅ΡΠ²Π΅ΡΡΠΈ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ
Π€ΡΠ½ΠΊΡΠΈΡ y = x ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΠ΅/ΡΠ±ΡΠ²Π°ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π’ΠΎ Π΅ΡΡΡ ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ (ΠΏΡΠ°Π²Π΅Π΅) ΠΈΠΊΡ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ (Π²ΡΡΠ΅) ΠΈΠ³ΡΠ΅ΠΊ. ΠΡΠ°ΡΠΈΠΊ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΡΡΡ Π²Π²Π΅ΡΡ (ΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ)
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π’ΠΎ Π΅ΡΡΡ ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ (ΠΏΡΠ°Π²Π΅Π΅) ΠΈΠΊΡ, ΡΠ΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ (Π½ΠΈΠΆΠ΅) ΠΈΠ³ΡΠ΅ΠΊ. ΠΡΠ°ΡΠΈΠΊ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²Π½ΠΈΠ· (ΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ).
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ±ΡΠ²Π°ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΠ°Π΄Π°Π½ΠΈΠ΅ β11 ΠΈΠ· ΠΠΠ 2020. Π’ΠΈΠΏΠΎΠ²ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΊΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π½Π° ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· ΠΏΠ΅ΡΠ²ΡΡ ΡΠ΅ΠΌ ΠΊΡΡΡΠ° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² Π²ΡΠ·Π΅. ΠΡΠΎ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½Π°Ρ ΡΠ΅ΠΌΠ°, ΡΡΠΎ ΠΌΡ Π² ΠΠΠ-Π‘ΡΡΠ΄ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ Π½Π΅ΠΉ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Ρ Π΄Π»Ρ ΡΡΠ°ΡΡΠ΅ΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΡΠΈΡΠ΅Π»Π΅ΠΉ, Π² ΠΠΎΡΠΊΠ²Π΅ ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½. Π ΡΠ°ΡΡΠΎ ΡΡΠ°ΡΡΠ½ΠΈΠΊΠΈ Π³ΠΎΠ²ΠΎΡΡΡ: Β«ΠΠ°Π»Ρ, ΡΡΠΎ ΠΌΡ Π½Π΅ Π·Π½Π°Π»ΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ°Π½ΡΡΠ΅Β».
ΠΠΎ ΡΡΠΎ Π½Π΅ Π²ΡΠ΅. ΠΠΌΠ΅Π½Π½ΠΎ Ρ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Π½Π°ΡΡΠΎΡΡΠ°Ρ, Β«Π²Π·ΡΠΎΡΠ»Π°ΡΒ» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. ΠΠ΅Π΄Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π΄ΡΠΎΠ±ΠΈ ΠΈ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ β ΡΡΠΎ Π²ΡΠ΅-ΡΠ°ΠΊΠΈ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΠΊΠ°. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ β ΡΡΠΎ Π°Π»Π³Π΅Π±ΡΠ°. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° β Π½Π°ΡΠΊΠ° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎ ΡΠΈΡΠ»Π°Ρ , Π½ΠΎ ΠΈ ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½. Π―Π·ΡΠΊ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΠΎΠ½ΡΡΠ΅Π½ ΠΈ ΡΠΈΠ·ΠΈΠΊΡ, ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³Ρ, ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΡ. Π, ΠΊΠ°ΠΊ ΡΠΊΠ°Π·Π°Π» ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ, Β«ΠΠ½ΠΈΠ³Π° ΠΏΡΠΈΡΠΎΠ΄Ρ Π½Π°ΠΏΠΈΡΠ°Π½Π° Π½Π° ΡΠ·ΡΠΊΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈΒ».
Π’ΠΎΡΠ½Π΅Π΅, ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ ΡΠΊΠ°Π·Π°Π» ΡΠ°ΠΊ:Β«ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° Π΅ΡΡΡ Π°Π»ΡΠ°Π²ΠΈΡ, ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΠΎΡΠΏΠΎΠ΄Ρ Π½Π°ΡΠ΅ΡΡΠ°Π» ΠΡΠ΅Π»Π΅Π½Π½ΡΡΒ».
Π’Π΅ΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ:
1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½Π°ΠΊΠΎΠΌΠ°Ρ Π·Π°Π΄Π°ΡΠ°! Π’Π°ΠΊΠΈΠ΅ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Π² Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. Π’Π°ΠΌ ΠΎΠ½ΠΈ ΡΡΠΈΡΠ°Π»ΠΈΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠΌΠΈ. ΠΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π½ΠΈΡΠ΅Π³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ.
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΡΡΠΌΠ°Ρ Ρ Π²ΡΠΊΠΎΠ»ΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ
2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠΉ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π² Π·Π°Π΄Π°ΡΠ°Ρ Π½Π° ΡΠΈΡΠ»Π° ΠΈ ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ²Π°. ΠΠ½ Π²ΡΡΡΠ΅ΡΠΈΡΡΡ Π²Π°ΠΌ ΡΠ°ΠΊΠΆΠ΅ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΈΠ΄Π΅ΡΡΡ Π±ΡΠ°ΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ.
3. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² 2 ΡΠ°Π·Π°, ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ ΠΈ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π½Π° 1 Π²Π²Π΅ΡΡ ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ
4. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ»Π°Π²Π½ΠΎΠ΅ β ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅:
ΠΠ΅ΠΉΡΡΠ²ΡΠ΅ΠΌ ΠΏΠΎ ΠΏΠΎΡΡΠ΄ΠΊΡ:
1) ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y=sinx ΡΠ΄Π²ΠΈΠ½Π΅ΠΌ Π½Π° Π²Π»Π΅Π²ΠΎ;
2) ΡΠΎΠΆΠΌΠ΅ΠΌ Π² 2 ΡΠ°Π·Π° ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ,
3) ΡΠ°ΡΡΡΠ½Π΅ΠΌ Π² 3 ΡΠ°Π·Π° ΠΏΠΎ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΠΈ,
4) ΡΠ΄Π²ΠΈΠ½Π΅ΠΌ Π½Π° 1 Π²Π²Π΅ΡΡ
Π‘Π΅ΠΉΡΠ°Ρ ΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. Π§ΡΠΎΠ±Ρ Π»ΡΡΡΠ΅ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΠΌΡ ΡΡΠΎ Π΄Π΅Π»Π°Π΅ΠΌ, ΡΠΈΡΠ°ΠΉΡΠ΅ ΡΡΠ°ΡΡΡ Β«ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΡΒ».
5. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΡΡΠΌΠ°Ρ x = 0 (ΠΎΡΡ Y) β Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ° ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΠΎ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ Π΅Π΅ ΠΈ Π½Π΅ ΡΠ»ΠΈΠ²Π°Π΅ΡΡΡ Ρ Π½Π΅ΠΉ (ΡΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΡ Β«ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΈΠΌΠΏΡΠΎΡΡΒ»)
ΠΡΡΡ Π»ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ Ρ Π½Π°ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ? Π§ΡΠΎΠ±Ρ Π²ΡΡΡΠ½ΠΈΡΡ ΡΡΠΎ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΠ³Π΄Π° x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
Π Π°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ. ΠΡΡΠΌΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
6. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: ΡΠΎΡΠΊΠΈ β 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ β ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ².
7. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡΡ ΠΊ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ΅
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΠΊΠ°ΠΊ ΠΡΠΎ ΠΌΡ ΠΈ Π²ΠΈΠ΄ΠΈΠΌ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
ΠΠΎΡ ΠΌΡ ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΌΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ. Π’Π΅ΠΏΠ΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ!
8. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ x ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ ΠΏΡΠΈ (ΠΊΠΎΠ³Π΄Π° Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ), Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΡΠΎΡΠΊΠ°Ρ , Π³Π΄Π΅ ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ cos x ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ ΠΏΡΠΈ
9. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΏΡΠΈ ΠΠ½Π° ΡΠ΅ΡΠ½Π°Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β Π² ΡΠΎΡΠΊΠ°Ρ , Π³Π΄Π΅ ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΠΏΡΠΈ
ΠΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ Π΅ΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½ΠΎΡΠΈΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Β«ΠΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°Β».
Π ΠΊΠ°ΠΊ ΠΆΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ? ΠΠ°, Π½Π°ΠΊΠΎΠ½Π΅Ρ-ΡΠΎ ΠΌΡ Π΄ΠΎ Π½Π΅Π΅ Π΄ΠΎΠ±ΡΠ°Π»ΠΈΡΡ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΡΠ½ΠΎ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°Ρ ΠΎΠ΄ΠΈΡΡ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
10. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ β Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΡΠ΅ΡΠ½Π°. ΠΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΈ x=0 Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ, ΠΏΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ,
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΌΠΈΠ½ΡΡΠ°Β» Π½Π° Β«ΠΏΠ»ΡΡΒ», β ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΏΠ»ΡΡΠ°Β» Π½Π° Β«ΠΌΠΈΠ½ΡΡΒ», β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ x=2 ΠΈ ΠΏΡΠΈ x=-2.
ΠΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΡΡΠΎΠΈΡΡ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ, ΠΈΠ»ΠΈ ΡΡ Π΅ΠΌΠ΅. ΠΠΎΠΌΠ½ΠΈΡΠ΅, Π²Ρ ΠΈΠ·ΡΡΠ°Π»ΠΈ Π΅Π΅ Π² ΡΠΊΠΎΠ»Π΅?
ΠΠ±ΡΠ°Ρ ΡΡ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
1. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
2. ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
3. Π§Π΅ΡΠ½ΠΎΡΡΡ β Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ)
4. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ)
5. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ)
6. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ½Π° ΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° ΠΈΠ»ΠΈ ΡΡΡΠΎΠ³ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°).
7. ΠΡΠΈΠΌΠΏΡΠΎΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ).
8. ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ
9. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ
10. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ. Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ .