Как изобразить тетраэдр на плоскости
Тетраэдр.
Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.
Свойства тетраэдра.
Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.
Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.
Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.
Типы тетраэдров.
У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.
Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.
Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:
— Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.
— Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.
— Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.
— Каркасный тетраэдр — тетраэдр, который таким условиям:
— Соразмерный тетраэдр, бивысоты у него одинаковы.
— Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.
Формулы для определения элементов тетраэдра.
Высота тетраэдра:
Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.
Основные формулы для правильного тетраэдра:
Тетраэдр
Тетраэдр имеет следующие характеристики:
Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.
Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.
Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.
Отметим, что очень редко, но встречаются геометрические тела, составленные не из правильных треугольников, и их тоже называют тетраэдры, так как они имеют четыре грани.
Математические характеристики тетраэдра
Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.
Радиус описанной сферы тетраэдра определяется по формуле:
Сфера может быть вписана внутрь тетраэдра.
Радиус вписанной сферы тетраэдра определяется по формуле:
Площадь поверхности тетраэдра
Для наглядности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой:
Объем тетраэдра определяется по следующей формуле:
Высота тетраэдра определяется по следующей формуле:
Расстояние до центра основания тетраэдра определяется по формуле:
Вариант развертки
Древнегреческий философ Платон ассоциировал тетраэдр с «земным» элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.
Заметим, что это не единственный вариант развертки.
Видео. Тетраэдр из набора «Волшебные грани»
Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора «Волшебные грани».
Сборка многогранника из набора:
Подробная сборка от Алексея Жигулева (youtube-канал Оригами)
вращение готового многогранника:
Видео. Вращение всех правильных многогранников
Популярное
Предположим, вы впервые увидели на прилавке книжного магазина или на страницах в интернете издание «Волшебные грани». Хочется попробовать? Но вот вопрос, какой выпуск взять на пробу.
Почтовые марки охватывают все значимые события в мире. Не обошли вниманием художники-филателисты и изображения многогранников. Почтовая марка, посвященная Леонарду Эйлеру с.
Современный кинематограф постарался привлечь внимание зрителя, используя геометрические формы «инопланетного происхождения».
Геометрическая форма коробочки издалека напоминает округлую форму, что делает акцент на сходство с мячиком. Но если присмотреться по внимательнее, то мы видим.
Тетраэдр
Урок 12. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Тетраэдр»
В начале изучения курса «Стереометрии» мы говорили, что все геометрические тела делятся на тела вращения и многогранники. В процессе изучения геометрии в десятом классе, мы будем подробно рассматривать с вами свойства тех или иных фигур.
Сегодня мы познакомимся с такой фигурой как тетраэдр. Прежде чем приступить к изучению пространственной фигуры, давайте вернемся в планиметрию и вспомним такую фигуру как многоугольник.
Напомню, что многоугольником называется либо замкнутая линия без самопересечений либо часть плоскости, ограниченная этой линией, включая ее саму.
Для стереометрии нам естественно подходит второе определение. Это определение показывает, что каждый многоугольник представляет собой плоскую поверхность.
Напомним, что простейшим многоугольником является треугольник. Возьмем треугольник ABC и точку D, которая не лежит в плоскости треугольника ABC. Соединим точку D с каждой вершиной треугольника ABC. Таким образом, мы получим три новых треугольника DAB, DBC, DCA. Тогда фигуру, которая состоит из четырех треугольников ABC, DAB, DBC, DCA, называют тетраэдром и обозначают так: DABC.
Треугольники, из которых состоит тетраэдр, называются гранями, стороны этих треугольников называют ребрами, вершины этих треугольников называются вершинами тетраэдра.
Нетрудно посчитать, что тетраэдр имеет четыре грани, 6 ребер и четыре вершины. Два ребра тетраэдра, которые не имеют общих вершин, называются противоположными. Давайте запишем пары противоположных ребер тетраэдра, который изображен на рисунке.
Это будут ребра AD и BC, BDи AC, CD и AB. Иногда одну из граней тетраэдра называют основанием, а три другие – боковыми гранями.
Слово тетраэдр произошло от древнегреческих слов теторес – четыре и эдра – основание или грань.
Если все грани тетраэдра – равносторонние треугольники, то такой тетраэдр называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями.
Последователи Пифагорейской философской школы форму тетраэдра придавали стихии огня.
Тетраэдр, все грани которого равные между собой треугольники, называется равногранным тетраэдром.
Если ребра тетраэдра, которые прилегают к одной вершине, перпендикулярны между собой, то такой тетраэдр называется прямоугольным.
Тетраэдры обычно изображаются в виде выпуклого или невыпуклого четырехугольника с диагоналями. При этом штриховыми линиями изображаются невидимые ребра.
На этом рисунке невидимым является только ребро AC.
А на этом рисунке невидимыми являются ребра ЕК, KF, KL.
Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов.
Ярким примером тетраэдра является разработанное для Нового Орлеана «здание-город», которое возвышается на 360 метров, включает в себя 20000 квартир, суммарная жилая площадь которых 2040000 квадратных метров. Здание использует экологичное энергоснабжение — энергию ветра, воды и солнца. Кроме квартир в тетраэдре помещаются коммерческие организации, три отеля, культурные объекты, школа, больницы и казино. И, учитывая место, под которое создавался проект, его немаловажная особенность — способность держаться на плаву.
Решим насколько задач.
Задача. Назовите все пары скрещивающихся рёбер тетраэдра . Сколько таких пар рёбер имеет тетраэдр?
Напомним, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.
Нетрудно увидеть, что скрещивающимися будут ребра AB и СD, АC и BD, АD и BC. То есть в тетраэдре есть три пары скрещивающихся ребер.
Задача. В тетраэдре , , , , , . Найти рёбра основания данного тетраэдра.
Задача. Пусть точки и – середины рёбер и тетраэдра . Доказать, что прямая параллельна плоскости .
Что и требовалось доказать.
Подведем итоги урока. Сегодня на уроке мы познакомились с пространственным многогранником – тетраэдром. Познакомились с элементами тетраэдра, решили несколько задач по данной теме.
10 класс. Геометрия. Тетраэдр. Задачи на построение сечений в тетраэдре.
10 класс. Геометрия. Тетраэдр. Задачи на построение сечений в тетраэдре.
Вопросы
Задай свой вопрос по этому материалу!
Поделись с друзьями
Комментарии преподавателя
1. Тетраэдр и его элементы
Как построить тетраэдр? Возьмем произвольный треугольник АВС. Произвольную точку D, не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.
Рис. 1. Тетраэдр АВСD
Замечание: можно принять плоскость АВС за основание тетраэдра, и тогда точка D является вершиной тетраэдра. Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ – это пересечение плоскостей АВD и АВС. Каждая вершина тетраэдра – это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС, АВD, АDС. Точка А – это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС ∩ АВD ∩ АСD.
Тетраэдр определение
2. Задача 1 на построение тетраэдра
Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек – это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.
3. Задача 2 Построить сечение тетраэдра плоскостью
Дан тетраэдр АВСD. Точка M принадлежит ребру тетраэдра АВ, точка N принадлежит ребру тетраэдра ВD и точка Р принадлежит ребру DС (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP.
Решение:
Рассмотрим грань тетраэдра DВС. В этой грани точки N и P принадлежат грани DВС, а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP – это линия пересечения двух плоскостей: плоскости грани DВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости DВС. Найдем точку пересечения прямых NP и ВС. Обозначим ее Е (Рис. 3.).
Рис. 3. Рисунок к задаче 2. Нахождение точки Е
Точка Е принадлежит плоскости сечения MNP, так как она лежит на прямой NР, а прямая NР целиком лежит в плоскости сечения MNP.
Также точка Е лежит в плоскости АВС, потому что она лежит на прямой ВС из плоскости АВС.
Рис. 4. Рисунок к задаче 2.Решение задачи 2
Рассмотрим теперь случай, когда NP параллельна BC. Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС, то прямая NP параллельна всей плоскости АВС.
4. Задача 3 Построить сечение тетраэдра плоскостью
Точка М лежит на боковой грани АDВ тетраэдра АВСD. Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС.
Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью
Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ, АС, ВС.
В плоскости АВD через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВD. Аналогично в плоскости АСD через точку Р проведем прямую РR параллельно АС. Получили точку R. Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС, значит, плоскости АВС и РQR параллельны. РQR – искомое сечение. Задача решена.
5. Задача 4
Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС.
Рис. 6. Рисунок к задаче 4
Решение:
Для решения построим вспомогательную плоскость DМN. Пусть прямая DМ пересекает прямую АВ в точке К (Рис. 7.). Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.
Рис. 7. Рисунок к задаче 4. Решение задачи 4
6. Задача 5 Построить сечение тетраэдра плоскостью
Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.
Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью
Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС. В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.
Рис. 9. Рисунок к задаче 5. Нахождение точки К
Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС. Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямаяР1Р2 параллельна данной прямой MN (Рис. 10.).
Рис. 10. Рисунок к задаче 5. Искомое сечение
Теперь проведем прямую Р1М и получим точку М1. Р1Р2NМ1 – искомое сечение.
7. Итоги урока по теме «Тетраэдр», «Ребро тетраэдра», «Грани тетраэдра», «Поверхность тетраэдра», «Вершины тетраэдра»
Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.