Как к отрицательной дроби прибавить положительную
Отрицательные дроби
Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.
Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:
каждое из них равно отрицательному числу
Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:
-2 : 7 | = | -2 | и | 2 : (-7) | = | 2 | . |
7 | -7 |
Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:
Сложение и вычитание
Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.
Приведём дроби к общему знаменателю:
— | 2 | + (- | 1 | ) = | -8 | + | -5 | . |
5 | 4 | 20 | 20 |
Теперь сложим числители дробей по правилам сложения рациональных чисел:
-8 | + | -5 | = | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 | 20 | 20 |
— | 2 | + (- | 1 | ) = | -8 | + | -5 | = |
5 | 4 | 20 | 20 |
= | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 |
Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.
— | 5 | — (- | 11 | ) = | — | 5 | + (+ | 11 | ) = |
12 | 12 | 12 | 12 |
= | — | 5 | + | 11 | = | -5 + 11 | = | 6 | . |
12 | 12 | 12 | 12 |
Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.
Умножение и деление
Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.
— | 2 | · (- | 4 | ) = | -2 | · | -4 | = | -2 · (-4) | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:
— | 2 | · (- | 4 | ) = | 2 | · | 4 | = | 2 · 4 | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
При умножении отрицательной дроби на положительную результат будет отрицательным.
— | 2 | · | 4 | = | — | 2 · 4 | = | — | 8 | . |
3 | 5 | 3 · 5 | 15 |
К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:
4 | · (- | 2 | ) = | — | 4 · 2 | = | — | 8 | . |
5 | 3 | 5 · 3 | 15 |
То есть при умножении положительной дроби на отрицательную результат будет отрицательным.
Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.
— | 2 | : (- | 4 | ) = | -2 | : | -4 | = |
3 | 5 | 3 | 5 |
= | -2 · 5 | = | -10 | = | 10 | . |
3 · (-4) | -12 | 12 |
Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.
Как к отрицательной дроби прибавить положительную :
Как возвести отрицательную / положительную дробь в квадрат?
Как возвести отрицательную / положительную дробь в квадрат?
ПОМОГИТЕ ПОЖАЛУЙСТА СРОЧНО?
ПОМОГИТЕ ПОЖАЛУЙСТА СРОЧНО!
Дана положительная дробь, у которой знаменатель на 5 больше, чем числитель.
К знаменателю и числителю дроби одновременно прибавили число 2.
Найдите данную дробь, если получившаяся дробь 1 / 8 больше данной.
Отрицательное или положительное будет число при деление : 1?
Отрицательное или положительное будет число при деление : 1.
Отрицательное на положитнльное число 2.
Отрицательное на отрицательное?
СРОЧНООПОЖАЛУЙСТААкак отрицательную степень превратить в положительную?
как отрицательную степень превратить в положительную.
Как изменится число если к нему прибавить положительное число?
Как изменится число если к нему прибавить положительное число?
а) к обеим его частям прибавить действительное число ;
б) обе его части умножить на положительное число ;
в) обе его части умножить на нуль или отрицательное число?
Числитель дроби в 3 раза меньше знаменателя.
Числитель дроби в 3 раза меньше знаменателя.
Отрицательные дроби, понятие и правила.
В этой теме разберем новое понятие “Отрицательные дроби”. Дроби, как и любые числа могут быть положительными и отрицательными.
Отрицательные дроби понятие и смысл. Примеры.
Ранее мы изучили тему обыкновенные дроби. Отрицательные дроби отличаются от обыкновенных дробей лишь знаком. Обыкновенные дроби имеют знак “+”. Например:
Все эти дроби можно записать со знаком плюс и смысл дробей не изменится.
Противоположные дроби, правила.
Дроби \(\frac<1><2>\) и \(-\frac<1><2>\) называются противоположными дробями. Дроби или числа, которые отличаются только знаком называются противоположными дробями или числами.
Вывод: если перед дробью поставить знак “+”, то дробь смысл дроби не изменится. Если поставить перед дробью знак “–”, то получим противоположную дробь данной дроби.
Не всегда знак минус пишется перед дробью, иногда минус записывают в числители или знаменателе. Рассмотрим пример:
Отрицательные дроби и нуль.
Нуль является исключением, нуль – противоположен самому себе.
Приведите пример противоположных чисел?
Ответ: \(-\frac<8><5>\) и \(\frac<8><5>\)
Назовите какому числу противоположно число нуль?
Ответ: нуль противоположен сам себе.
Какому числу противоположно положительное число?
Ответ: положительное число противоположно данному отрицательному числу.
Отрицательная дробь противоположна какой дроби?
Ответ: отрицательная дробь противоположна данной положительной дроби.
Правило сложения отрицательных чисел и чисел с разными знаками
Для суммирования двух отрицательных чисел, необходимо:
суммировать их модули;
перед полученной суммой поставить знак «минус».
В данном случае, складываем модули 9 и 6, и перед получившимся натуральным числом 15 ставим знак «-«.
Сложение рациональных или дробных чисел выполняется аналогичным способом:
К 26,35 прибавляем 25,35 (т. е. мы складываем модули), в итоге получаем 51,75 с отрицательным значением. Перед ним ставим знак «минус».
Для суммирования натуральных чисел со знаками «+» и «-», надо:
из слагаемого с большим значением модуля вычесть слагаемое с меньшим значением;
перед полученным результатом поставить знак того слагаемого, которое имело большее значение.
61,2 + (-31,5) = + (61,2 — 31,5) = 30,5
Модуль большего числа со знаком «+», соответственно, сумма получилась положительная:
Большее число со знаком «-», поэтому заменяем плюс на минус и получаем отрицательный ответ.
Как вычитать отрицательные и положительные числа
Для нахождения разности противоположных чисел, надо к уменьшаемому прибавить вычитаемое с противоположным знаком, то есть заменить разность суммой.
Наглядно данное действие лучше представить в виде формулы:
То есть любое выражение, содержащее знаки сложения и вычитания, следует решать как сумму чисел.
-6,1 + 5,6 = 5,6 + (-6,3) = 0,5.
Разность выражения будет положительной, если уменьшаемое больше вычитаемого, и отрицательной, если значение модуля уменьшаемого меньше вычитаемого. В случае, когда уменьшаемое и вычитаемое одинаковые, их разность будет равна нулю.
Если нужно отнять отрицательное число, то два знака «минус» подряд дают знак «плюс».
Все вышеперечисленные действия возможно выполнить на калькуляторе. Для этого достаточно ввести сначала модуль числа, потом нажать кнопку изменения знака «+/-».
Заключение
Для закрепления изученных правил можно использовать различные методы проверки знаний. На первом этапе лучшим вариантом будет тренажер, с помощью которого решение подобных примеров можно довести до автоматизма.
Так же для закрепления материала подойдет тестирование. Его можно провести в виде самостоятельной работы. В конце изучения всех правил применяется контрольная работа, задания для которой можно подобрать из различных дидактических материалов.
Сложение дробей: теория и практика
Понятие дроби
Дробь — одна из форм записи частного чисел a и b, представленная в виде a/b. Существует два формата записи:
Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.
Дроби бывают двух видов:
Числовые — состоят из чисел, например, 5/9 или (1,5 − 0,2)/15.
Алгебраические — состоят из переменных, например, (x + y)/(x − y). В этом случае значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.
Неправильной называют такую дробь, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1/4.
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Онлайн-школа Skysmart приглашает детей и подростков на курсы по математике — за интересными задачами, новыми прикладными знаниями и хорошими оценками!
Как плюсовать дроби
Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.
Свойства сложения
Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.
Сложение дробей с одинаковыми знаменателями
Чтобы получить сумму двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.
Не забудьте проверить, можно ли сократить дробь.
Сложение дробей с разными знаменателями
Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:
1. Найдем наименьшее общее кратное знаменателей (далее — НОК) для определения единого делителя.
Для этого записываем в столбик числа, которые в произведении дают значения знаменателей складываемых дробей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 × 2 × 3 × 5 = 90
2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:
Полученные числа записываем справа сверху над числителем.
3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
4. Проверим полученный результат:
Еще раз ход решения одной строкой:
Сложение смешанных чисел
Сложение смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
1. Сложить целые части.
2. Сложить дробные части.
Если знаменатели разные, воспользуемся знаниями из предыдущего примера и приведем к общему.
3. Суммируем полученные результаты.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, тренируйтесь решать примеры на сложение дробей как можно чаще.