Как называется луч с нарисованной шкалой
Шкала. Координатный луч
С помощью ровной деревянной рейки две точки A и B можно соединить отрезком (рис. 46 ). Однако этим примитивным инструментом измерить длину отрезка AB не удастся. Его можно усовершенствовать.
На рейке через каждый сантиметр нанесем штрихи. Под первым штрихом нанесем число 0, под вторым − 1, третьим − 2 и т.д. (рис. 47 ). В таких случаях говорят, что на рейку нанесена шкала с ценой деления 1 см. Эта рейка со школой похожа на линейку. Но чаще всего на линейку наносят шкалу с ценой деления 1 мм (рис. 48 ).
Из повседневной жизни Вам хорошо известны и другие измеритильные приборы, имеющие шкалы различной формы. Например: циферблат часов со шкалой деления 1 мин (рис. 49 ), спидометр автомобиля со шкалой деления 10 км/ч (рис. 50 ), комнатный термометр со шкалой деления 1 °C ( рис. 51 ), весы со шкалой деления 50 г (рис. 52 ).
Конструктор создает измерительные приборы, шкалы которых конечны, т. е. среди отмеченных на шкале чисел всегда есть наибольшее. А вот математик с помощью воображения может построить и бесконечную шкалу.
Начерти луч OX. Отметим на этом луче какую−нибудь точку E. Напишем над точкой O число 0, а под точкой E − число 1 (рис. 53 ).
Полученную бесконечную шкалу называют координатным лучом, точку O − началом отсчета, а отрезок OE − единичным отрезком координатного луча.
5.1. Координатный луч. Единичный отрезок
Началу луча (точке О) поставим в соответствие число 0 (ноль). Отложим от точки О отрезок ОА произвольной длины. Точке А поставим в соответствие число 1 (один). Длину отрезка ОА будем считать равной 1 (единице). Отрезок АВ = 1 называется единичным отрезком. Отложим от точки А в направлении луча отрезок АВ = ОА. Поставим точке В в соответствие число 2. Заметим, что точка В находится от точки О на расстоянии в два раза большем, чем точка А. Значит, длина отрезка ОВ равна 2 (двум единицам). Продолжая откладывать в направлении луча отрезки, равные единичному, будем получать точки, которым соответствуют числа 3, 4, 5, и т.д. Данные точки удалены от точки О соответственно на 3, 4, 5, и т.д. единиц.
Луч, построенный таким способом, называется координатным или числовым. Начало числового луча, точка О, называется точкой отсчета. Числа, поставленные в соответствие точкам на этом луче, называются координатами этих точек (отсюда: координатный луч). Пишут: О(0), А(1), В(2), читают: «точка О с координатой 0 (ноль), точка А с координатой 1 (один), точка В с координатой 2 (два)» и т.д.
5.2. Шкала
Важным применением числового луча являются шкалы и диаграммы. Они используются в измерительных приборах и устройствах, при помощи которых измеряют различные величины. Одним из основных элементов измерительных приборов является шкала. Она представляет собой числовой луч, нанесенный на металлическое, деревянное, пластиковое, стеклянное или другое основание. Часто шкала выполнена в виде окружности или части окружности, которые разделены штрихами на равные части (деления-дуги) подобно числовому лучу. Каждому штриху на прямой или круговой шкале поставлено в соответствие определенное число. Это значение измеряемой величины. Например, числу 0 на шкале термометра соответствует температура 0 0 С, читают: «ноль градусов Цельсия». Это температура, при которой начинает таять лед (или начинает замерзать вода).
Используя измерительные приборы и инструменты со шкалами, определяют значение измеряемой величины по положению указателя на шкале. Чаще всего указателем служат стрелки. Они могут перемещаться вдоль шкалы, отмечая значение измеряемой величины (например, стрелка часов, стрелка весов, стрелка спидометра – прибора для измерения скорости, рисунок 3.1.). Подобна смещающейся стрелке граница столбика ртути или подкрашенного спирта в термометре (рисунок 3.1). В некоторых приборах движется не стрелка вдоль шкалы, а шкала перемещается относительно неподвижной стрелки (метки, штриха), например, в напольных весах. В некоторых инструментах (линейка, рулетка) указателем служат границы самого измеряемого предмета.
Промежутки (части шкалы) между соседними штрихами шкалы называются деления. Расстояние между соседними штрихами, выраженное в единицах измеряемой величины, называется ценой деления (разность чисел, которым соответствуют соседние штрихи шкалы.) Например, цена деления спидометра на рисунке 3.1. равна 20 км/ч (двадцать километров в час), а цена деления комнатного термометра на рисунке 3.1. равна 1 0 С (один градус Цельсия).
Диаграмма
3.2.1. Величины и приборы для их измерения
В таблице приведены названия некоторых величин, а также приборов и инструментов, предназначенных для их измерения. (Жирным шрифтом выделены основные единицы Международной системы единиц).
5.2.2. Термометры. Измерение температуры
На рисунке 3.4 приведены термометры, в которых использованы разные температурные шкалы: Реомюра (°R), Цельсия (°С) и Фаренгейта (°F).В них использован один и тот же температурный интервал – разность температур кипения воды и плавления льда. Этот интервал разделён на различное число частей: в шкале Реомюра – на 80 частей, шкале Цельсия – на 100 частей, в шкале Фаренгейта – на 180 частей. При этом в шкалах Реомюра и Цельсия температуре таяния льда соответствует число 0 (ноль), а в шкале Фаренгейта – число 32. Единицы температуры в этих термометрах: градус по Реомюру, градус по Цельсию, градус по Фаренгейту. В устройстве термометров используется свойство жидкостей (спирта, ртути) расширяться при нагревании. При этом различные жидкости по-разному расширяются при нагревании, что видно на рисунке 3.5, где штрихи для столбика спирта и ртути не совпадают при одинаковой температуре.
5.2.3. Измерение влажности воздуха
Влажность воздуха зависит от количества в нём водяных паров. Например, летом в пустыне воздух сухой, влажность его низкая, так как в нём содержится мало паров воды. В субтропиках, например, в Сочи влажность высокая, в воздухе много водяных паров. Измерить влажность можно с помощью двух термометров. Один из них обычный (сухой термометр). У второго шарик обёрнут влажной тканью (влажный термометр). Известно, что при испарении воды температура тела понижается. (Вспомните озноб при выходе из моря после купания). Поэтому влажный термометр показывает более низкую температуру. Чем суше воздух, тем больше разность показаний двух термометров. Если показания термометров одинаковы (разность равна нулю), то влажность воздуха равна 100 %. В этом случае выпадает роса. Прибор, измеряющий влажность воздуха, называется психрометром (рисунок 3.6). Он снабжён таблицей, в которой приведены: показания сухого термометра, разность показаний двух термометров, влажность воздуха в процентах. Чем ближе влажность к 100%, тем более влажный воздух. Нормальная влажность в помещениях должна быть равна около 60%.
Блок 3.3. Самоподготовка
5.3.1. Заполните таблицу
Отвечая на вопросы таблицы, заполняйте свободную колонку («Ответ»). При этом используйте рисунки приборов в блоке «Дополнительный».
760 мм. рт. ст. считается нормальным. На рисунке 3.11 показано изменение атмосферного давления при подъёме на самую высокую гору Эверест.
Постройте линейную диаграмму изменения давления, отложив на вертикальном луче высоту над уровнем моря, а по горизонтали давление.
Блок 5.4. Проблемный
Построение числового луча с единичным отрезком заданной длины
Для решения этой учебной проблемы работайте по плану, приведенному в левой колонке таблицы, при этом правую колонку рекомендуется закрыть листом бумаги. Ответив на все вопросы, сопоставьте свои выводы с приведёнными решениями.
Блок 5.5. Фасетный тест
Числовой луч, шкала, диаграмма
В задачах фасетного теста использованы рисунки из таблицы. Все задачи начинаются так: «ЕСЛИ числовой луч представлен на рисунке …., то…»
ЕСЛИ: числовой луч представлен на рисунке… Таблица
РАВНО (равна, равны, это):
а) 10 б) 6,12,3,3 в) 1 г) 99,102,106,104 д) 2 е) 201,202 ж) 49 з) 3500,3000,8000,4500
и) 5,2,1,4 к) 599 л) 6,3,3,9 м) 10,4,16,7 н) 100 о) 4 км/ч п) 65,85,105,115 р) 7,2,4,6 с) 20,20,50,30 т) 0 у) 700,600,1600,900 ф) 1,2,3,4,5,6 х) 25,10,5,20 ц) 3,4,5,2 ч) 203,197,200,206 ш) 15,20,25,10 щ) 1599 ы) 11,12,13,14,15 э) 30,60,15,15 ю) 0,700,1300,1600 я) 100,100,250,150 аа) 30,15,15,45 бб) 4 вв) 1,2,3,4,5 гг) 17 дд) 500 кг ее) 19 жж) 80 зз) 100,101,102,103,104,105 ии)5,6 кк) 28,64,100,164 лл) 1500000,3000000,4500000 мм) 11 нн) 36 оо) 1500,3000,4500 пп) 7 рр) 24 сс) 15,30,45
Блок 5.6. Учебная мозаика
В заданиях мозаики использованы приборы из блока «Дополнительный». Ниже приведено поле мозаики. На нём указаны названия приборов. Кроме того для каждого прибора обозначены: измеряемая величина (В), единица измерения величины (Е), показание прибора (П), цена деления шкалы (Ц). Далее помещены ячейки мозаики. Прочитав ячейку, вы должны сначала определить прибор, к которому она относится, и поставить в окружность ячейки номер прибора. Затем надо догадаться, о чём эта ячейка. Если речь идёт об измеряемой величине, надо к номеру приписать букву В. Если это единица измерения – поставить букву Е, если показание прибора – букву П, если цена деления – букву Ц. Таким образом надо обозначить все ячейки мозаики. Если ячейки вырезать и расположить так, как на поле, то можно систематизировать сведения о приборе. В компьютерном варианте мозаики при правильном расположении ячеек создаётся рисунок.
Шкалы, координаты
Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.
Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.
Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).
Рисунок 1. Измерительная линейка.
Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.
Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).
Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.
Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.
Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.
Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.
Рисунок 2 Цена деления шкалы
Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?
Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:
Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.
Координатный луч, единичный отрезок, координаты точки
Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.
Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.
Рис. 3. Луч с началом в точке O
Рис. 4. Луч с равными отрезками
Поставим возле начала луча (точки O ) число 0 (нуль). Возле второго конца отрезка OP (возле точки P ) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).
Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.
Рис. 5. Луч с отрезками и цифрами
Покажу еще раз на примере точки S :
так как RS=OP (по условиям построения данных отрезков),
подставив известные нам значения длины отрезков OR и OP, получим:
Значит, точке S на нашем лучу соответствует число 3.
Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.
Рис. 6. Координатный луч
Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.
Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.
Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.
Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.
Координатный луч — это не что иное, как бесконечная шкала.
Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.
Рис. 7. Разные варианты единичного отрезка
Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).
Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.
Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.
Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.
Рис. 8. Координаты точек
Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A ( 5 ), B ( 8 ), C ( 13 ).
В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.
Рис. 9. Большие числа на координатном луче.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.2 / 5. Количество оценок: 9
Координатный луч
На рисунке изображён луч OE, который разбит на деления, как линейка.
Координатный луч
Точка O — начало луча, и этой точке соответствует число 0.
Эта точка — начало отсчёта.
Точке E соответствует число 1, а длина отрезка OE принята за единицу длины и называется единичным отрезком.
Единичный отрезок может содержать разное число клеток.
Каждая следующая точка отстоит от предыдущей на расстояние, равное единице длины.
Число, соответствующее точке координатного луча, называется координатой этой точки.
Пример. Точке A соответствует число 3.
Точка А на координатном луче
Значит, координата точки A равна 3. Записывается так A (3). Читается: точка A с координатой 3.
Для любого числа можно указать соответствующую ему точку, т. к. луч можно продолжить бесконечно.
Пример #1. Можно ли назвать изображённый луч координатным лучом?
Луч АВ
Решение:
Изображённый луч не будет координатным лучом, т. к. на луче не указано начало отсчёта и нет единичного отрезка.
Ответ: нет.
Пример #2. Можно ли назвать изображённый луч координатным лучом?
Луч МР
Решение:
Изображённый луч будет координатным лучом, т. к. на луче указано начало отсчёта, положительное направление слева направо и отмечено, что второе деление соответствует 6 единичным отрезкам, значит, одно деление соответствует 3 единичным отрезкам.
Ответ: да.
Пример #3. Определи координату точки C.
Решение:
Известно, что число, соответствующее точке координатного луча, является координатой этой точки. Точке E соответствует число 1, и длина отрезка OE принята за единицу длины и называется единичным отрезком.
До точки C от точки O — начала отсчёта — 2 единичных отрезка, поэтому точка C соответствует числу 2, т. е. координата точки C(2).
Ответ: координата точки C(2).
Пример #4. Запиши число, стоящее у конца стрелки на рисунке.
Координаты точки
Решение:
Для определения числа, стоящего у конца стрелки на данном рисунке, составим числовое выражение и найдём его значение:
Значит, искомое число, соответствующее точке у конца стрелки, равно 56.
Ответ: число, стоящее у конца стрелки на рисунке, равно 56.
Пример #5. Какую температуру показывает термометр, изображённый на рисунке? Какую температуру покажет этот термометр, если столбик опустится на 3 деления?
Определение температуры по термометру
Решение:
Анализируя данный рисунок, можно сделать вывод, что 1 деление соответствует 2 °С, значит, 3 деления соответствуют 6 °С, поэтому термометр, изображённый на рисунке, показывает температуру 26 °С.
Если столбик опустится на 3 деления, то термометр покажет температуру 26−3⋅2 = 20 °С.
Ответ: термометр показывает 26 °С, если столбик опустить на 3 деления, то термометр покажет 20 °С.
Пример #6. Запиши наибольшее число единичных отрезков, соответствующих одному делению координатного луча, чтобы можно было отметить числа: 20, 30, 40, 50, 80, 90.
Скольким делениям соответствует число 50?
Решение:
Для того чтобы можно было отметить на координатном луче числа:
20, 30, 40, 50, 80, 90 — требуется определить наибольшее число единичных отрезков, соответствующих одному делению координатного луча.
Заметим, что у предложенных чисел наибольшим общим делителем является число 10, поэтому возьмём, что одному делению соответствует число 10.
Значит, число делений, соответствующих числу 50, равно 5.
Ответ: наибольшее число единичных отрезков, соответствующих одному делению координатного луча, равно 10, а число делений, соответствующих числу 50, равно 5.
Пример #7. Определи координату точки B, изображённой на рисунке. Если координата точки O(0), а координата точки C(60).
Определение цены одного деления
Решение:
Для определения координаты точки B, изображённой на рисунке, найдём сначала, какому числу отвечает одно деление на этом координатном луче, отмеченное точкой E.
Длину отрезка OC определим как 4⋅OE, значит, точка E соответствует числу 60 : 4 = 15.
Поэтому координата точки B(180), т. к. до точки B от точки O 12 таких делений.
Ответ: координата точки B(180).
Пример #8. Определи координаты точек C и B:
Работа с координатным лучом
Решение:
Координату точки C можно узнать, отняв от координаты точки A указанное на рисунке число.
Получим: 99 − 47 = 52, т. е. координата точки C(52).
Далее, координату точки B можно узнать, прибавив к координате точки C указанное на рисунке число.
Получим: 52 + 28 = 80, т. е. координата точки B(80).
Ответ: координата точки C(52); координата точки B(80).
Пример #9. Запиши координаты точек A, B и C.
Координаты трёх точек на координатном луче
Решение:
Координату точки A можно узнать, прибавив к координате точки D указанное на рисунке число.
Получим: 80 + 50 = 130, т. е. координата точки A(130).
Далее, координату точки B можно узнать, отняв от координаты точки A указанное на рисунке число.
Получим: 130 − 37 = 93, т. е. координата точки B(93).
Координату точки C можно узнать, отняв от координаты точки B указанное на рисунке число.
Получим: 93 − 37 = 56, т. е. координата точки C(56).
Ответ: координата точки A(130); координата точки B(93); координата точки C(56).
Пример #10. Запиши точку, которой соответствует начало координатного луча на данном рисунке.
Начало координатного луча
Если известно, что координата точки H(35), координата точки L(45) и координата точки N(55).
Решение:
Анализируя рисунок, выясняем, что координата точки H(35), координата точки L(45) и координата точки N(55).
Между точками имеем по два деления.
Значит, цена одного деления: (45−35):2 = 5.
Отсчитаем от точки H влево 7 делений и получим точку, соответствующую числу 0, т. е. точку, которой соответствует начало координатного луча на данном рисунке.
Ответ: началом координатного луча на данном рисунке будет точка A.
Пример #11. Составь числовое выражение для координаты точки B и найди его значение:
Составь числовое выражение для координаты точки B
Решение:
Для определения числа, стоящего у конца стрелки на данном рисунке, т. е. для определения координаты точки B, составим числовое выражение и найдём его значение: 78 − 10 = 68.
Значит, искомое число, соответствующее точке B у конца стрелки, равно 68.
Ответ: числовое выражение для координаты точки B 78-10, его значение равно 68.
Пример #12. Изобрази координатный луч, считая, что единичный отрезок равен 2 клеткам тетради. Отметь на нём точку A (2). Скольким клеткам тетради соответствует отмеченная точка?
Решение:
Изображая координатный луч и считая, что единичный отрезок равен 2 клеткам тетради, получим, что точка A(2) соответствует
2 ⋅ 2 = 4 клеткам тетради.
Координатный луч с единичным отрезком в 2 клетки
Ответ: точка A соответствует 4 клеткам.
Пример #13. На рисунке изображена шкала. Какое число соответствует точке D? Шкала
Решение:
Анализируя данный рисунок, можно сделать вывод, что 1 деление соответствует числу 1, значит, точке D соответствует число 10 + 1 ⋅ 15 = 25.
Ответ: точке D на шкале соответствует число 25