Как называется цифры при умножении
Умножение
В этом разделе познакомимся с умножением и узнаем, что сложение одинаковых слагаемых можно заменить умножением.
Например, 6 + 6 + 6 + 6 = 24 можно записать по-другому: 6 • 4 = 24
Смысл действия умножения состоит в том, что при умножении находится сумма одинаковых слагаемых.
Первое число при умножении показывает, какое слагаемое повторяют несколько раз.
Второе число при умножении показывает, сколько раз повторяют это слагаемое.
Результат умножения показывает, какое число получается.
6 • 4 значит, что число 6 повторяют 4 раза: 6 + 6 + 6 + 6 = 24
Числа при умножении
Результат умножения, или Произведение
Чтение числовых выражений
Этот пример можно прочитать по-разному.
Умножение на 1
4 • 1 = 4, потому что это значит, что число 4 повторяют только 1 раз.
23 • 1 = 23, потому что это значит, что число 23 повторяют только 1 раз.
Умножение на 0
8 • 0 = 0, потому что это значит, что число 8 повторяют 0 раз.
26 • 0 = 0, потому что это значит, что число 26 повторяют 0 раз.
Умножение на 10
8 • 10 = 80, потому что число 8 повторяют 10 раз.
15 • 10 = 150, потому что число 15 повторяют 10 раз.
Связь деления и умножения
8 • 3 = 24, потому что 8 повторяют 3 раза.
24 : 3 = 8, потому что в 24 по 3 содержится 8 раз.
24 : 8 = 3, потому что в 24 по 8 содержится 3 раза.
В несколько раз больше
Решим задачу:
В магазине было 2 лисички, а котят в 4 раза больше. Сколько было котят?
Это значит, что котят было 4 раза по 2.
Заменяем сложение умножением и получаем:
Во сколько раз больше? Во сколько раз меньше?
Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?
Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?
Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.
Поделись с друзьями в социальных сетях:
Как называется цифры при умножении
29. Умножение. Название компонентов при умножении. Свойства умножения
1. Организационный этап
Давайте, ребята, учиться считать,
Чтобы скорей математиком стать.
Ему по плечу любая работа,
Но прежде разучим правила счёта.
Звонок прозвенел. Он позвал на урок.
Пора! Тишина! К нам наука идёт…
2. Этап подготовки учащихся к активному сознательному усвоению знаний
1. Целеполагание
А поможет нам в этом новый герой. Отгадайте загадку и скажите, кто придет сегодня к нам в гости.
2. Устный счёт
Задание 1
Увеличьте 40 на разность чисел 30 и 20. 50
Уменьшите 90 на сумму чисел 10 и 60. 20
Из 85 вычесть сумму чисел 70 и 15. 0
К 42 прибавьте разность чисел 48 и 18. 72
К разности чисел 30 и 5 прибавьте сумму чисел 10 и 40. 75
Из суммы чисел 40 и 50 вычтите разность чисел 36 и 16. 70
Задание 2
Выразите значение в сантиметрах.
26 см = …дм…см 26 см= 2 дм 6 см
1 м = …см 1 м = 100 см
72 см = …дм…см 72 см = 7 дм 2 см
Задание 3
Выразите в часах и минутах.
70 мин =…ч…мин 70 мин = 1 ч 10 мин
1 ч 30 мин=…мин 1 ч 30 мин = 90 мин
Задание 4
Помогите зайке узнать, какой цифры не хватает?
Задание 5
Айболит – непросто доктор,
У него полно хлопот:
На рыбалку он пошёл –
Был отличный, сильный клёв,
Вмиг попались на крючок
Лещ, карась и окунёк,
Три ерша и столько ж щук,
Пескарят двенадцать штук.
Вы вели улову счёт?
Сосчитайте улов доктора Айболита.
Улов доктора – 21 рыба.
1 + 1 + 1 + 3 + 3 + 12 = 21(р.)
Задание 6
Променял Айболит карася
На три пары поросят.
Сколько поросят у доктора? 2 + 2 + 2 = 6 (п.)
Задание 7
Возьмите 9 палочек и сложите фигуру.
Переложите 3 палочки так, чтобы получилось 4 равных треугольника.
3. Этап усвоения новых знаний
Обведите 4 раза по 2 клеточки.
Сколько всего клеточек вы обвели? Восемь.
Какие слагаемые в этой сумме?
Верно, слагаемые одинаковые.
Сколько их? Четыре слагаемых.
Запомните, сложение одинаковых слагаемых можно заменить новым действием – умножением.
Точка – знак умножения. Данное действие называется действием умножения.
Число 2 показывает, какое слагаемое повторяется, и записывается на первом месте. Число 4 показывает, сколько раз оно повторяется, записывается на втором месте.
4. Этап закрепления новых знаний
Задание 1
Рассмотри рисунок и объясни записи.
В каждой корзине по 5 яблок. Чтобы найти, сколько яблок в трех корзинах, нужно сложить 5 три раза.
Сложение одинаковых слагаемых можно заменить умножением.
Читаю: по пять взять 3 раза, получится 15, или 5 умножить на 3, получится 15.
Задание 2
Рассмотрите рисунки, составьте и решите числовые выражения, рассуждая по образцу.
2 мешка по 8 арбузов
8+8=16
8·2=16
7 ваз по 3 розы
3+3+3+3+3+3+3+3=21
3·7=21
3 тарелки по 3 банана
3+3+3=9
3·3=9.
4. Этап закрепления новых знаний
Задание 1
Что обозначает первое число?
Что обозначает второе число?
Чтобы вычислить результат, заменим этот пример на умножение примером на сложение.
Что обозначает число 3?
Верно, 3 раза берём число 10.
Какой пример на сложение получится?
Вычислите сумму
Значит, 10 умножить на 3, получится 30. Записывается – это так.
10 • 3
10 + 10 + 10 = 30
10 • 3 = 30
Причём числа, которые умножают, называются множителями. 10 – первый множитель, 3 второй множитель. Результат умножения называется произведением. Соответственно выражение тоже называется произведением.
4. Этап закрепления новых знаний
Задание 1
Найдите значение выражения.
4 + 4 + 4 = 12
Замените сложение умножением
4 • 3 = 12
Прочитайте запись
Найдите значение выражения
5 + 5 =…
Замените сложение умножением
5 • 2 =…
Задание 2
Найдите значение выражения
Замените сложение умножением
5 + 5 + 5 + 5 + 5 + 5 = 30
5 • 6 = 30
3. Этап усвоения новых знаний
Предлагаю познакомиться со свойством умножения.
Перед вами знакомые школьные парты и ученики.
Сколько детей за первой партой?
За второй?
За третьей?
Сколько детей за тремя партами?
Как узнали? 2 • 3 = 6
Верно, по 2 взяли 3 раза.
Сколько ребят в каждом столбике?
Сколько столбиков?
Как узнать, сколько всего детей? 3 • 2 = 6
Верно, по 3 взяли 2 раза.
Сравните результаты умножения. Как вы думаете, почему они одинаковые?
Молодцы, потому что считали одних и тех же детей, но по-разному. Множители переставили местами, а результат тот же. Сделайте вывод.
От перестановки множителей произведение не изменяется.
Как можно назвать это cвойство умножения? Догадайтесь, вспомнив сложение.
Верно, мы узнали переместительное свойство умножения.
Задание 1
Запишите выражения, используя переместительное свойство умножения.
— Рассмотрите данные выражения, и скажите, какой закономерности подчиняются числа в этих выражениях?
— Запишите это свойство буквами.
а • в = в • а
Запомните, от перестановки множителей результат не меняется.
4. Этап закрепления новых знаний
Задание 1
Используя переместительное свойство умножения, найдите значение второго выражения в каждой паре, зная значение первого.
Задание 2
На одной тарелке 3 яблока. Сколько яблок на четырёх тарелках?
Что известно в задаче?
В задаче даны одинаковые числа. Сколько их?
Что спрашивается в задаче?
Каким действием будем решать задачу?
3 + 3 + 3 + 3 = 12 (ябл.)
Замените сложение умножением и решите задачу.
Задание 3
Назовите фигуру, изображенную на рисунке.
Сколько сторон квадрата достаточно измерить?
Как найти периметр квадрата?
Р = 5 + 5 + 5 + 5 = 20(см)
Можно найти периметр по-другому.
Мы знаем, что сложение одинаковых чисел можно заменить умножением. Р2 · 4 = 8(см)
Задание 4
— Назовите компоненты действия при умножении.
Первый множитель, второй множитель, произведение
— Вычислите, заменяя умножение сложением.
1) 6 • 3
Заменим умножение сложением
6 + 6 + 6 = 18
Значит
6 • 3 = 18
Заменим умножение сложением
5 + 5 + 5 = 15
Значит
5 • 3 = 15
Заменим умножение сложением
2 + 2 + 2 + 2 + 2 = 10
Значит
2 • 5 = 10
Заменим умножение сложением
1 + 1 + 1 + 1 +1 = 5
Значит
1 • 5 = 5
Заменим умножение сложением
1 + 1 + 1 = 3
Значит
1 • 3 = 3
Рассмотрите вычисления и сделайте вывод.
При умножении 1 на любое число в результате получится то число, на которое умножали.
Задание 5
Рассмотрим еще одну особенность умножения.
Замените умножения делением.
Сделайте вывод.
При умножении 0 на любое число получается 0.
Самостоятельная работа
Задание 1
Вычислите, заменяя умножение сложением.
4 + 4 + 4 + 4 = 16
4 • 4 = 16
8 + 8+ 8 = 24
8 • 3 = 24
1 + 1 + 1+ 1 + 1 + 1 = 6
1 • 6 = 6
Проверьте себя и оцените свои успехи.
Задание 2
В одном бидоне 3л молока. Сколько литров молока в шести бидонах?
Сделайте к задаче схематический рисунок и запишите решение задачи сложением и умножением.
3 + 3 + 3 + 3 + 3 + 3= 18 (л)
Ответ: 18 литров.
3 • 6 = 18 (л)
Ответ: 18 литров.
Проверьте себя и оцените свои успехи.
Задание 3
Используя свойство умножения, вставьте пропущенные числа, чтобы равенства стали верными.
Проверьте себя и оцените свои успехи.
Логические задания
Задание 1
К Айболиту пришли лисичка, зайка и волчок. Если зайка, стоящий крайним слева, станет между лисичкой и Айболитом, то доктор Айболит окажется крайним слева. Кто где стоит?
Ответ: Слева направо: зайка, Айболит, лисичка, волчок.
Задание 2
Как из 7 палочек сложить 3 треугольника?
Проверьте, так ли у вас получилось?
5. Этап подведения итогов
С какими новыми математическими действиями познакомились на уроке?
Зайка поднимает табличку «умножение»
Какие слагаемые можно заменить произведением?
Как называется результат умножения?
Волк поднимает табличку «произведение»
Как называются компоненты действия при умножении?
Обезьянка поднимает табличку с названием компонентов действий при умножении.
Сформулируйте свойство умножения.
Айболит поднимает табличку со свойством умножения.
Соберите фразу правильно и вспомните свойства умножения.
Рефлексия
Я узнал
Я научился
Мне было сложно
Всего хорошего. Спасибо за урок.
Остались вопросы по теме? Наши репетиторы готовы помочь!
Подготовиться к ЕГЭ, ОГЭ и другим экзаменам
Подготовиться к поступлению в любой ВУЗ страны
Умножение натуральных чисел
Я сперва покажу на примере, для чего нужно умножение, а после дам определение умножения и подробно расскажу об этом действии.
Допустим, мы хотим купить 14 тетрадей по 22 рубля каждая. Планируя покупку, нам нужно знать, сколько мы заплатим за всю покупку?
Чтобы ответить на этот вопрос, нам нужно сложить стоимость каждой тетради, которую мы хотим купить. А, так мы запланировали покупку 14 тетрадей, тогда мы складываем 22 рубля 14 раз, то есть, находим сумму 14 слагаемых, каждое из которых равно 22 :
22+22+22+22+22+22+22+22+22+22+22+22+22+22=308 (то есть, 308 рублей).
Если размер и количество одинаковых слагаемых небольшие, мы без особого труда можем найти их сумму. Но что же делать, если слагаемые многозначные и их количество велико?
Умножение – это арифметическое действие сложения определенного количества одинаковых слагаемых.
Действие умножение – это частный случай действия сложение.
Число, которое является повторяющимся слагаемым, называется множимое (то, что множится, умножается).
Число, которое указывает на количество одинаковых слагаемых, называется множитель.
Множимое и множитель имеют общее название – сомножители.
Результат действия умножения называется произведением.
22 ∙14=308,
22x14=308,
22*14=308.
При записи от руки действие умножение принято обозначать при помощи точки, косой крест используется в основном при печати, а звездочка – в компьютерном наборе. Но даже и во время компьютерного набора грамотнее использовать точку или косой крест (букву х).
Прочитать действие умножения и результат можно такими способами:
Компоненты действия умножение для двух сомножителей:
Компоненты умножения для трех сомножителей и более:
Основные свойства умножения
Поскольку действие умножение является частным случаем действия сложение, то основные свойства сложения распространяются и на умножение.
Законы умножения и их следствия
Умножение обладает такими основными свойствами, называемые законами умножения, из которых вытекают остальные свойства и следствия:
Переместительный закон умножения.
Произведение двух или нескольких сомножителей от изменения их порядка не меняется.
Это значит, что значение произведения не зависит от порядка перемножения сомножителей, то есть, от порядка выполнения действия умножение.
Для двух сомножителей мы можем записать переместительный закон умножения в общем виде так:
ab=ba.
Допустим, нам нужно подсчитать количество отделений в шкафу (рис. 1).
Это свойство также верно для трех и более сомножителей.
К примеру, нам нужно подсчитать количество отделений в двух одинаковых шкафах (рис. 2).
5 ∙3+5 ∙3 =5 ∙3 ∙2.
15+15=15 ∙2,
30=30.
3 ∙5+3 ∙5=3 ∙5 ∙2,
15+15=15 ∙2,
30=30.
Значит, 5 ∙3 ∙2=3 ∙5 ∙2=30.
Поэтому, для трех сомножителей переместительный закон умножения в общем виде выглядит так:
abc=acb=bac=bca=cab=cba.
Сочетательный закон умножения.
Результат умножения трех и более чисел не изменяется, если любые из этих сомножителей заменить их произведением.
Следовательно, мы можем группировать множители между собой каким угодно образом, и выполнять действие умножения с этими группами.
В общем виде для трех сомножителей сочетательный закон умножения можно выразить так:
abc=a(bc)=(ab)c=b(ac).
Этот закон можно назвать следствием переместительного закона умножения.
Так, при подсчете количества отделений в двух шкафах на рисунке 2, мы можем сперва найти число отделений в одном шкафу, а потом умножить результат на 2 :
(5 ∙3) ∙2=15 ∙2=30,
(3 ∙5) ∙2=15 ∙2=30,
а можем сперва найти общее количество рядов отделений в обоих шкафах, а после умножить их на количество отделений в ряду:
(3 ∙2) ∙5=6 ∙5=30.
Как видите, результат во всех случаях одинаковый.
Особые случаи умножения: умножение единицы и нуля
Если в произведении двух чисел один из сомножителей единица, то произведение равно второму сомножителю:
a ∙1=1 ∙a=a.
А при умножении единицы на любое число (например, 1 ∙ 7 ) мы находим сумму семи единиц, то есть, то количество единиц, из которых состоит данное число. Следовательно, сумма этих единиц равна самому данному числу :
1+1+1+1+1+1+1=7.
Если в произведении любого количества сомножителей одним из сомножителей является нуль, то и произведение равно нулю:
a∙b∙0=0∙a∙b=a∙0∙c=0.
Умножение однозначных чисел
Умножение двух однозначных натуральных чисел a и b – это нахождения суммы b слагаемых, каждое из которых равно числу a, и при этом a и b являются натуральными числами.
Для облегчения вычисления, были посчитаны результаты умножения всех однозначных чисел друг на друга, и сведены в специальные таблицы умножения.
Умножение многозначного числа на однозначное
900+80+5+900+80+5+900+80+5+900+80+5.
Воспользуемся законами сложения и сгруппируем одинаковые слагаемые этого выражения вместе:
900+900+900+900+80+80+80+80+5+5+5+5,
(900+900+900+900)+(80+80+80+80)+(5+5+5+5).
Суммы в скобках мы можем заменить на произведение одинаковых слагаемых и числа этих слагаемых в каждых скобках:
900 ∙4+80 ∙4+5 ∙4.
Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.
Умножение в столбик многозначного числа на однозначное
4 раза по 8 десятков – это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 (в уме) ставим маленькую цифру 3 :
4 раза по 9 сотен – это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч:
Умножение многозначных чисел
Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел:
Умножение на число, состоящее из единицы и любого количества нулей
327 ∙10 =3270
327 ∙100 =32700
Итак, чтобы умножить какое-нибудь число на другое, которое начинается на единицу, и заканчивается любым количеством нулей, достаточно к концу первого числа дописать столько нулей, сколько содержится во втором числе.
Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей
327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327.
(327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327).
(327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2).
(327 ∙2) ∙10.
764 ∙3 =2292.
2292 ∙100 =229200.
Итак, чтобы умножить какое-нибудь число на другое, начинающееся любыми цифрами и заканчивающееся нулями, достаточно умножить первое число на число, образованное первыми цифрами второго, а к результату приписать справа столько нулей, сколько их было в конце второго числа.
Иными словами: нужно от второго числа отбросить нули в конце, умножить получившиеся числа, а к результату приписать справа столько нулей, сколько изначально отбросили.
Общее правило умножения чисел
Количество слагаемых ( 168 ) мы можем разложить на разрядные слагаемые ( 100+60+8 ) и согласно сочетательному закону сложения сгруппировать их следующим образом : сто слагаемых плюс шестьдесят слагаемых плюс восемь слагаемых.
Исходя из определения умножения, выражения в скобках мы можем представить не в виде суммы большого количества слагаемых, а как сумму произведений:
Таким образом, чтобы умножить два многозначных числа, достаточно последовательно умножить одно из этих чисел на количество единиц каждого из разрядов второго числа, и сложить полученные результаты.
Частное произведение – это число, полученное после умножения одного из сомножителей на количество единиц какого-либо разряда другого сомножителя.
Умножение в столбик многозначных чисел
При записи действия умножения в столбик сомножители располагаются друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел ; под множителем проводим горизонтальную черту, и ставим между сомножителями знак действия умножения:
В частных произведениях обычно не пишут (опускают) нули в конце числа для упрощения записи. При этом следует не забывать, что, первую полученную цифру частного произведения нужно писать в том разряде, цифру которого мы умножаем на множимое.
Некоторые особенности записи умножения в столбик
При записи нахождения произведения двух чисел в столбик существуют некоторые особенности, которые помогают сократить запись и упростить наглядность вычисления. Все они являются следствием свойств умножения.
Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось ли это у вас или нет.
Изменение произведения чисел при изменении его сомножителей
Если увеличить один из сомножителей в несколько раз, произведение также увеличится в это же число раз.
18 ∙2 =36
18 ∙6 =108.
По-другому и быть не может, и вот почему.
Первое произведение представляет собой сумму двух слагаемых :
18+18.
Второе произведение – это сумма шести таких же слагаемых :
18+18+18+18+18+18.
(18+18)+(18+18)+(18+18).
Если уменьшить один из сомножителей в несколько раз, произведение также уменьшится в это же число раз.
Попробуйте самостоятельно доказать правильность этого свойства. Пишите в комментариях, получилось ли это у вас?
Если увеличить один из сомножителей в несколько раз, а второй в это же число раз уменьшить, то произведение при этом не поменяется.
32 ∙8 =256,
Увеличим первый сомножитель в 4 раза, а второй во столько же раз уменьшим:
128 ∙2 =256.
Теперь уменьшим первый сомножитель произведения 32 ∙8 в 4 раза, а второй уменьшим в это же число раз:
8 ∙32 =256.
Умножение произведения на число и числа на произведение
Если необходимо умножить произведение на число, нужно любой сомножитель этого произведения умножить на данное число, а результат умножить последовательно на оставшиеся сомножители.
(a ∙b ∙c) ∙d =(a ∙d) ∙b ∙c =(b ∙d) ∙a ∙c =(c ∙d) ∙a ∙b
10 ∙7 =70 (просто приписываем к семерке нуль),
70 ∙9 =630 (находим по таблице умножения 7 ∙9 =63 и приписываем в конце нуль).
Когда я пишу «находим по таблице умножения», это означает, что мы вспоминаем эту строку из таблицы, а не ищем её там на самом деле. Таблицу умножения нужно знать наизусть!
Если необходимо умножить число на произведение, нужно умножить данное число на любой сомножитель, а результат умножить на оставшиеся сомножители.
a ∙(b ∙c ∙d) =(a ∙b) ∙c ∙d =(a ∙c) ∙b ∙d =(a ∙d) ∙b ∙c.
30 ∙3 =90,
90 ∙2 =180.
Распределительный закон умножения (умножение суммы на число)
Когда мы рассматривали умножение многозначного и однозначного чисел, мы раскладывали число 975 на его разрядные слагаемые ( 900+70+5 ), а потом умножали на 4 отдельно каждое это слагаемое. Аналогично можно поступать при умножении числа на любую сумму.
(5+2+4+9)+(5+2+4+9)+ (5+2+4+9).
Все эти слагаемые представляют собой одну сумму чисел, сгруппированных в определенные группы. Запишем их без скобок:
5+2+4+9+5+2+4+9+5+2+4+9,
а затем, используя переместительный и сочетательный законы сложения, сгруппируем одинаковые слагаемые:
Основываясь на определении действия умножение, так как мы имеем в каждых скобках одинаковые слагаемые, переписываем это выражение следующим образом:
5 ∙3+2 ∙3+4 ∙3+9 ∙3.
Распределительный закон умножения: для умножения суммы на любое число, необходимо каждое слагаемое этой суммы умножить на данное число, а затем сложить полученные произведения.
Согласно переместительному закону умножения, это свойство справедливо и при умножении числа на сумму.
Для умножения числа на сумму, необходимо умножить данное число на каждое слагаемое этой суммы, а результаты полученных произведения сложить.
(a+b+c+d)∙z =z∙(a+b+c+d) =a ∙z+b ∙z+c ∙z+d ∙z.
Название распределительный происходит от того, что действие умножения на сумму распределяется между каждым из слагаемых этой суммы.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.3 / 5. Количество оценок: 3