Как зашифровать слово в цифры
ШИФРОВАНИЕ ЦИФРАМИ
При шифровании методом подстановки, буквы исходного текста могут заменяться на геометрические фигуры, фигурки людей, животных, любые рисунки, символы, буквы или цифры (группы).
КАЖДАЯ БУКВА КОДИРУЕТСЯ ТОЛЬКО ОДНИМ ЧИСЛОМ
По этой таблице закодирована шифровка из детской книжки-раскраски. Современная алфавитная позиционная нумерация аналогична числовому соответствию литеры в славянской азбуке. Это простая таблица. Здесь числа, используемые для кодирования, расположены по порядку.
Здесь числа (двузначные цифровые группы) набраны в лотерейном порядке по принципу случайных чисел.
КАЖДАЯ БУКВА КОДИРУЕТСЯ ДВУМЯ ГРУППАМИ
Общее количество чисел (цифровых групп), используемых для кодирования, в 2 раза больше чем букв.
ИСПОЛЬЗОВАНИЕ ДЛЯ ЗАМЕНЫ КАЖДОЙ БУКВЫ НЕСКОЛЬКИХ ГРУПП
В процессе шифрования для замены каждой буквы могут использоваться 3, 4 и более групп. Соответственно общее количество групп, используемых для шифрования, может быть в 3, 4 и n раз больше чем букв в алфавите.
КОДИРОВАНИЕ С УСЛОЖНЕНИЕМ.
В отличие от приложения № 30 все числа, используемые здесь для кодирования букв, взяты из таблицы умножения. Слово «ШАЛАШ» закодированное по кодовой таблице, представленной в приложении № 33, будет иметь такой вид: 10 24 40 24 10.
Усложняя с помощью таблицы умножения, заменяем код буквы на множители: вместо «10» пишем «25» или «52» (2´5 = 5´2 = 10), «24» заменяем на «38», «83», «46» или «64» (3´8 = 8´3 = 4´6 = 6´4 = 24) и т. д. После усложнения шифровка будет выглядеть так: 25 38 85 46 52. Таким образом для кодирования каждой буквы будет использоваться не одно число, а несколько (2-4), что сделает шифр более надежным, т. к. в зашифрованном тексте одни и те же числа (группы) будут повторяться реже.
Даже если Вы потеряете такую таблицу, или ее похитят, подсмотрят, скопируют, злоумышленники не смогут этим воспользоваться (расшифровать) т.к. в криптограмме цифровых групп из кодовой таблицы не будет, а будут группы, состоящие из множителей.
Чтобы не привлекать внимание посторонних, шифрограмма может быть замаскирована под арифметические действия первоклассника и записана так:
2´5 = 10, 3´8 = 24, 8´5 = 40, 4´6 = 24, 5´2 = I0
Сообщение можно передавать короткими частями.
ДЛЯ ЗАМЕНЫ КАЖДОЙ БУКВЫ ИСПОЛЬЗУЕТСЯ РАЗНОЕ КОЛИЧЕСТВО ГРУПП
Рассмотрим систему шифрования в виде таблицы размером 10‰10 (размеры могут быть другими). Пронумеруем строки и столбцы. Десятые строку и столбец обозначим нулём (нумерацию можно начать не с 1, а с 0). Нумерация может быть буквенной. Причём для нумерации строк и столбцов могут использоваться не одни и те же, а разные буквы. Каждая клетка имеет координаты, состоящие из двух цифр или букв – номер строки и номер столбца. Заполним ячейки таблицы буквами алфавита, необходимыми знаками препинания, цифрами. При этом 100 ячеек распределим пропорционально, в зависимости от частоты употребления букв в русском языке. Несколько клеток оставим пустыми. Пустышки при необходимости будем применять вместо пробелов, для обозначения красной строки, для доукомплектования последних групп (в случае перегруппировки) и в качестве резерва.
В простейшем варианте буквы вписываются в таблицу в алфавитном порядке, а цифры в возрастающей последовательности (такое расположение символов не трудно запомнить). Причём, часто встречающиеся буквы повторяются необходимое количество раз: так буква О займёт 8-9 клеток, буква Е займёт 7-8 клеток, буква А повторяется 6-7 раз, букву И запишем 5-6 раз и т.д. Нумерацию строк и столбцов можно сделать в обратном или случайном порядке.
В усложнённом варианте сначала вписывается какой-нибудь заученный текст (например, стихотворение), затем дописываются буквы алфавита, не вошедшие в этот текст. Сначала вписываются какие-либо запомнившиеся цифры (например, 1945 – год окончания второй мировой войны), потом остальные. Таким образом, расположение знаков в таблице будет условно-случайным, что повышает стойкость шифра. Применяются разные правила заполнения таблицы в удобном для запоминания порядке. В нашем примере в таблицу (приложение № 34) в начале записана заученная фраза, за ней – запомнившиеся цифры, потом остальные буквы алфавита, далее следуют знаки препинания и оставшиеся цифры, и, наконец, дописаны необходимое количество раз часто встречающиеся буквы. Нумерация строк и столбцов имеет два варианта (цифровой и буквенный).
В процессе шифрования буква исходного текста отыскивается в таблице и заменяется на двузначную цифровую группу (координаты), в которой одна цифра является номером строки, а другая – номером столбца.
Зашифруем текст (ЛУЧШЕ БОЛЬШОЙ ДОСТАТОК, ЧЕМ МАЛЕНЬКИЙ НЕДОСТАТОК.) и получим криптограмму ( 17 45 49 40 10 37 13 88 18 40 24 43 39 95 15 12 29 23 96 11 57 49 21 44 89 68 17 77 19 18 87 16 43 80 78 76 97 05 25 69 08 98 11 50 ). В полученной криптограмме, не смотря на короткий открытый текст, просматриваются повторяющиеся (одинаковые) двузначные группы. Если шифровку перегруппировать в группы по 3, 4 или 5 символов, повторы одинаковых двузначных групп будут незаметны.
Если применить буквенную нумерацию строк и столбцов, шифрограмма будет иметь другой вид: ЛЖ ОД ОИ ОК ЛК НЖ ЛВ ТЗ ЛЗ ОК МГ ОВ НИ УД ЛД ЛБ МИ МВ УЕ ЛА ПЖ ОИ МА ОГ ТИ РЗ ЛЖ СЖ ЛИ ЛЗ ТЖ ЛЕ ОВ ТК СЗ СЕ УЖ ФД МД РИ ФЗ УЗ ЛА ПК. Для усложнения можно в каждой второй группе шифрограммы символы записывать в обратном порядке – сначала номер столбца, а затем номер строки. Или комбинировать – чередовать цифровые и буквенные группы.
Рассматриваемая таблица отличается от постолбцовой таблицы замены, показанной в приложении № 32, тем, что кроме случайного соответствия символ–двузначная группа, мы имеем неодинаковое (приблизительно пропорциональное частоте употребления) количество заменяющих групп для разных букв, что уменьшает проявление в шифрограмме закономерностей и характеристик исходного текста.
ШИФРОБЛОКНОТ ИЗГОТОВЛЕНИЕ ШИФРОБЛОКНОТА
Для шифрования используйте 1000 групп, по три цифры в каждой (трехзначные числа): 000, 001, 002, 003 и так далее до 999.
Для простоты распределите трёхзначные группы поровну. 1000 : 36 = 27 и 28 в остатке. Для шифрования каждой буквы и знаков препинания используйте по 27 групп. Остальные 28 оставьте в резерве. Для резерва выделите отдельную страницу.
Достаньте из коробки очередной, третий, номерок. Запишите следующее число в блокнот, например, 952. И т.д. пока на странице с буквой “А” ни будет записано 27 групп.
323 162 952 338 566 532 959 379 005 837 832 582 035 818 460 615 907 464 814 931 564 690 305 405
336 259 179 286 177 059 236 790 971 113 504 390 910 331 458 422 856 496 025 370 217 232 794 598 724 345 486
Аналогично набираете и вписываете числа (трёхзначные цифровые группы) для других букв и знаков препинания. Оставшиеся 28 групп запишите в резерв.
Шифроблокнот и дешифрант к нему показаны в приложении № 35.
ШИФРОВАНИЕ ТЕКСТА
Аналогично шифруйте остальные буквы текста (в приведённом примере их нет). Получилась шифрограмма: 336 323 259 162. Для замены каждой буквы можно использовать любые из 27 групп, предназначенных для данной буквы, в любом порядке, не допуская повторного использования одной и той же группы.
РАСШИФРОВАНИЕ
Для расшифрования криптограммы найдите в дешифранте порядковый № 336. Напротив него стоит буква
Получится:
ПРАВИЛА РАБОТЫ
Работа с конфиденциальной информацией и СРШ-ДРК должна проводиться в отсутствии посторонних. При шифровании запрещается повторное использование одной и той же группы. Если текст большой и блокнот не позволяет зашифровать весь текст без повторного использования групп, разбейте его на части и передавайте по частям, как отдельные шифрограммы.
Уничтожайте испорченные листы и черновики, а также утратившие значение шифрограммы и секретные тексты.
Можно разбить алфавит попарно и для замены буквы «А» использовать группы, предназначенные для буквы «Б». Для замены буквы «Б» применять группы, предназначенные для буквы «А», и так далее.
Ключ менять по специальному секретному графику (расписанию смены ключа).
Классический криптоанализ
На протяжении многих веков люди придумывали хитроумные способы сокрытия информации — шифры, в то время как другие люди придумывали еще более хитроумные способы вскрытия информации — методы взлома.
В этом топике я хочу кратко пройтись по наиболее известным классическим методам шифрования и описать технику взлома каждого из них.
Шифр Цезаря
Самый легкий и один из самых известных классических шифров — шифр Цезаря отлично подойдет на роль аперитива.
Шифр Цезаря относится к группе так называемых одноалфавитных шифров подстановки. При использовании шифров этой группы «каждый символ открытого текста заменяется на некоторый, фиксированный при данном ключе символ того же алфавита» wiki.
Способы выбора ключей могут быть различны. В шифре Цезаря ключом служит произвольное число k, выбранное в интервале от 1 до 25. Каждая буква открытого текста заменяется буквой, стоящей на k знаков дальше нее в алфавите. К примеру, пусть ключом будет число 3. Тогда буква A английского алфавита будет заменена буквой D, буква B — буквой E и так далее.
Для наглядности зашифруем слово HABRAHABR шифром Цезаря с ключом k=7. Построим таблицу подстановок:
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | a | b | c | d | e | f | g |
И заменив каждую букву в тексте получим: C(‘HABRAHABR’, 7) = ‘OHIYHOHIY’.
При расшифровке каждая буква заменяется буквой, стоящей в алфавите на k знаков раньше: D(‘OHIYHOHIY’, 7) = ‘HABRAHABR’.
Криптоанализ шифра Цезаря
Малое пространство ключей (всего 25 вариантов) делает брут-форс самым эффективным и простым вариантом атаки.
Для вскрытия необходимо каждую букву шифртекста заменить буквой, стоящей на один знак левее в алфавите. Если в результате этого не удалось получить читаемое сообщение, то необходимо повторить действие, но уже сместив буквы на два знака левее. И так далее, пока в результате не получится читаемый текст.
Аффиный шифр
Рассмотрим немного более интересный одноалфавитный шифр подстановки под названием аффиный шифр. Он тоже реализует простую подстановку, но обеспечивает немного большее пространство ключей по сравнению с шифром Цезаря. В аффинном шифре каждой букве алфавита размера m ставится в соответствие число из диапазона 0… m-1. Затем при помощи специальной формулы, вычисляется новое число, которое заменит старое в шифртексте.
Процесс шифрования можно описать следующей формулой:
,
где x — номер шифруемой буквы в алфавите; m — размер алфавита; a, b — ключ шифрования.
Для расшифровки вычисляется другая функция:
,
С учетом этого ограничения вычислим пространство ключей аффиного шифра на примере английского алфавита. Так как английский алфавит содержит 26 букв, то в качестве a может быть выбрано только взаимно простое с 26 число. Таких чисел всего двенадцать: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23 и 25. Число b в свою очередь может принимать любое значение в интервале от 0 до 25, что в итоге дает нам 12*26 = 312 вариантов возможных ключей.
Криптоанализ аффиного шифра
Очевидно, что и в случае аффиного шифра простейшим способом взлома оказывается перебор всех возможных ключей. Но в результате перебора получится 312 различных текстов. Проанализировать такое количество сообщений можно и в ручную, но лучше автоматизировать этот процесс, используя такую характеристику как частота появления букв.
Давно известно, что буквы в естественных языках распределены не равномерно. К примеру, частоты появления букв английского языка в текстах имеют следующие значения:
Т.е. в английском тексте наиболее встречающимися буквами будут E, T, A. В то время как самыми редкими буквами являются J, Q, Z. Следовательно, посчитав частоту появления каждой буквы в тексте мы можем определить насколько частотная характеристика текста соответствует английскому языку.
Для этого необходимо вычислить значение:
,
где ni — частота i-й буквы алфавита в естественном языке. И fi — частота i-й буквы в шифртексте.
Чем больше значение χ, тем больше вероятность того, что текст написан на естественном языке.
Таким образом, для взлома аффиного шифра достаточно перебрать 312 возможных ключей и вычислить значение χ для полученного в результате расшифровки текста. Текст, для которого значение χ окажется максимальным, с большой долей вероятности и является зашифрованным сообщением.
Разумеется следует учитывать, что метод не всегда работает с короткими сообщениями, в которых частотные характеристики могут сильно отличатся от характеристик естественного языка.
Шифр простой замены
Очередной шифр, относящийся к группе одноалфавитных шифров подстановки. Ключом шифра служит перемешанный произвольным образом алфавит. Например, ключом может быть следующая последовательность букв: XFQABOLYWJGPMRVIHUSDZKNTEC.
При шифровании каждая буква в тексте заменяется по следующему правилу. Первая буква алфавита замещается первой буквой ключа, вторая буква алфавита — второй буквой ключа и так далее. В нашем примере буква A будет заменена на X, буква B на F.
При расшифровке буква сперва ищется в ключе и затем заменяется буквой стоящей в алфавите на той же позиции.
Криптоанализ шифра простой замены
Шифр Полибия
Еще один шифр подстановки. Ключом шифра является квадрат размером 5*5 (для английского языка), содержащий все буквы алфавита, кроме J.
При шифровании каждая буква исходного текста замещается парой символов, представляющих номер строки и номер столбца, в которых расположена замещаемая буква. Буква a будет замещена в шифртексте парой BB, буква b — парой EB и так далее. Так как ключ не содержит букву J, перед шифрованием в исходном тексте J следует заменить на I.
Например, зашифруем слово HABRAHABR. C(‘HABRAHABR’) = ‘AB BB EB DA BB AB BB EB DA’.
Криптоанализ шифра Полибия
Шифр имеет большое пространство ключей (25! = 2 83 для английского языка). Однако единственное отличие квадрата Полибия от предыдущего шифра заключается в том, что буква исходного текста замещается двумя символами.
Поэтому для атаки можно использовать методику, применяемую при взломе шифра простой замены — поиск восхождением к вершине.
В качестве основного ключа выбирается случайный квадрат размером 5*5. В ходе каждой итерации ключ подвергается незначительным изменениям и проверяется насколько распределение триграмм в тексте, полученном в результате расшифровки, соответствует распределению в естественном языке.
Перестановочный шифр
Помимо шифров подстановки, широкое распространение также получили перестановочные шифры. В качестве примера опишем Шифр вертикальной перестановки.
В процессе шифрования сообщение записывается в виде таблицы. Количество колонок таблицы определяется размером ключа. Например, зашифруем сообщение WE ARE DISCOVERED. FLEE AT ONCE с помощью ключа 632415.
Так как ключ содержит 6 цифр дополним сообщение до длины кратной 6 произвольно выбранными буквами QKJEU и запишем сообщение в таблицу, содержащую 6 колонок, слева направо:
Для получения шифртекста выпишем каждую колонку из таблицы в порядке, определяемом ключом: EVLNE ACDTK ESEAQ ROFOJ DEECU WIREE.
При расшифровке текст записывается в таблицу по колонкам сверху вниз в порядке, определяемом ключом.
Криптоанализ перестановочного шифра
Лучшим способом атаки шифра вертикальной перестановки будет полный перебор всех возможных ключей малой длины (до 9 включительно — около 400 000 вариантов). В случае, если перебор не дал желаемых результатов, можно воспользоваться поиском восхождением к вершине.
Для каждого возможного значения длины осуществляется поиск наиболее правдоподобного ключа. Для оценки правдоподобности лучше использовать частоту появления триграмм. В результате возвращается ключ, обеспечивающий наиболее близкий к естественному языку текст расшифрованного сообщения.
Шифр Плейфера
Шифр Плейфера — подстановочный шифр, реализующий замену биграмм. Для шифрования необходим ключ, представляющий собой таблицу букв размером 5*5 (без буквы J).
Процесс шифрования сводится к поиску биграммы в таблице и замене ее на пару букв, образующих с исходной биграммой прямоугольник.
Рассмотрим, в качестве примера следующую таблицу, образующую ключ шифра Плейфера:
Зашифруем пару ‘WN’. Буква W расположена в первой строке и первой колонке. А буква N находится во второй строке и третьей колонке. Эти буквы образуют прямоугольник с углами W-E-S-N. Следовательно, при шифровании биграмма WN преобразовывается в биграмму ES.
В случае, если буквы расположены в одной строке или колонке, результатом шифрования является биграмма расположенная на одну позицию правее/ниже. Например, биграмма NG преобразовывается в биграмму GP.
Криптоанализ шифра Плейфера
Так как ключ шифра Плейфера представляет собой таблицу, содержащую 25 букв английского алфавита, можно ошибочно предположить, что метод поиска восхождением к вершине — лучший способ взлома данного шифра. К сожалению, этот метод не будет работать. Достигнув определенного уровня соответствия текста, алгоритм застрянет в точке локального максимума и не сможет продолжить поиск.
Чтобы успешно взломать шифр Плейфера лучше воспользоваться алгоритмом имитации отжига.
Отличие алгоритма имитации отжига от поиска восхождением к вершине заключается в том, что последний на пути к правильному решению никогда не принимает в качестве возможного решения более слабые варианты. В то время как алгоритм имитации отжига периодически откатывается назад к менее вероятным решениям, что увеличивает шансы на конечный успех.
Суть алгоритма сводится к следующим действиям:
Для расчета коэффициентов, определяющих принадлежность текста к естественному языку лучше всего использовать частоты появления триграмм.
Шифр Виженера
Шифр Виженера относится к группе полиалфавитных шифров подстановки. Это значит, что в зависимости от ключа одна и та же буква открытого текста может быть зашифрована в разные символы. Такая техника шифрования скрывает все частотные характеристики текста и затрудняет криптоанализ.
Шифр Виженера представляет собой последовательность нескольких шифров Цезаря с различными ключами.
Продемонстрируем, в качестве примера, шифрование слова HABRAHABR с помощью ключа 123. Запишем ключ под исходным текстом, повторив его требуемое количество раз:
Цифры ключа определяют на сколько позиций необходимо сдвинуть букву в алфавите для получения шифртекста. Букву H необходимо сместить на одну позицию — в результате получается буква I, букву A на 2 позиции — буква C, и так далее. Осуществив все подстановки, получим в результате шифртекст: ICESCKBDU.
Криптоанализ шифра Виженера
Первая задача, стоящая при криптоанализе шифра Виженера заключается в нахождении длины, использованного при шифровании, ключа.
Для этого можно воспользоваться индексом совпадений.
Индекс совпадений — число, характеризующее вероятность того, что две произвольно выбранные из текста буквы окажутся одинаковы.
Для любого текста индекс совпадений вычисляется по формуле:
,
где fi — количество появлений i-й буквы алфавита в тексте, а n — количество букв в тексте.
Для английского языка индекс совпадений имеет значение 0.0667, в то время как для случайного набора букв этот показатель равен 0.038.
Более того, для текста зашифрованного с помощью одноалфавитной подстановки, индекс совпадений также равен 0.0667. Это объясняется тем, что количество различных букв в тексте остается неизменным.
Это свойство используется для нахождения длины ключа шифра Виженера. Из шифртекста по очереди выбираются каждая вторая буквы и для полученного текста считается индекс совпадений. Если результат примерно соответствует индексу совпадений естественного языка, значит длина ключа равна двум. В противном случае из шифртекста выбирается каждая третья буква и опять считается индекс совпадений. Процесс повторяется пока высокое значение индекса совпадений не укажет на длину ключа.
Успешность метода объясняется тем, что если длина ключа угадана верно, то выбранные буквы образуют шифртекст, зашифрованный простым шифром Цезаря. И индекс совпадений должен быть приблизительно соответствовать индексу совпадений естественного языка.
После того как длина ключа будет найдена взлом сводится к вскрытию нескольких шифров Цезаря. Для этого можно использовать способ, описанный в первом разделе данного топика.
Исходники всех вышеописанных шифров и атак на них можно посмотреть на GitHub.
10 популярных кодов и шифров
Авторизуйтесь
10 популярных кодов и шифров
Коды и шифры — не одно и то же: в коде каждое слово заменяется другим, в то время как в шифре заменяются все символы сообщения.
В данной статье мы рассмотрим наиболее популярные способы шифрования, а следующим шагом будет изучение основ криптографии.
Стандартные шифры
Этот шифр известен многим детям. Ключ прост: каждая буква заменяется на следующую за ней в алфавите. Так, А заменяется на Б, Б — на В, и т. д. Фраза «Уйрйшоьк Рспдсбннйту» — это «Типичный Программист».
Попробуйте расшифровать сообщение:
Сумели? Напишите в комментариях, что у вас получилось.
Шифр транспонирования
В транспозиционном шифре буквы переставляются по заранее определённому правилу. Например, если каждое слово пишется задом наперед, то из hello world получается dlrow olleh. Другой пример — менять местами каждые две буквы. Таким образом, предыдущее сообщение станет eh ll wo ro dl.
Ещё можно использовать столбчатый шифр транспонирования, в котором каждый символ написан горизонтально с заданной шириной алфавита, а шифр создаётся из символов по вертикали. Пример:
Из этого способа мы получим шифр holewdlo lr. А вот столбчатая транспозиция, реализованная программно:
Азбука Морзе
В азбуке Морзе каждая буква алфавита, цифры и наиболее важные знаки препинания имеют свой код, состоящий из череды коротких и длинных сигналов:
Чаще всего это шифрование передаётся световыми или звуковыми сигналами.
Сможете расшифровать сообщение, используя картинку?
Шифр Цезаря
Это не один шифр, а целых 26, использующих один принцип. Так, ROT1 — лишь один из вариантов шифра Цезаря. Получателю нужно просто сообщить, какой шаг использовался при шифровании: если ROT2, тогда А заменяется на В, Б на Г и т. д.
А здесь использован шифр Цезаря с шагом 5:
Моноалфавитная замена
Коды и шифры также делятся на подгруппы. Например, ROT1, азбука Морзе, шифр Цезаря относятся к моноалфавитной замене: каждая буква заменяется на одну и только одну букву или символ. Такие шифры очень легко расшифровываются с помощью частотного анализа.
Например, наиболее часто встречающаяся буква в английском алфавите — «E». Таким образом, в тексте, зашифрованном моноалфавитным шрифтом, наиболее часто встречающейся буквой будет буква, соответствующая «E». Вторая наиболее часто встречающаяся буква — это «T», а третья — «А».
Однако этот принцип работает только для длинных сообщений. Короткие просто не содержат в себе достаточно слов.
Шифр Виженера
Представим, что есть таблица по типу той, что на картинке, и ключевое слово «CHAIR». Шифр Виженера использует принцип шифра Цезаря, только каждая буква меняется в соответствии с кодовым словом.
В нашем случае первая буква послания будет зашифрована согласно шифровальному алфавиту для первой буквы кодового слова «С», вторая буква — для «H», etc. Если послание длиннее кодового слова, то для (k*n+1)-ой буквы, где n — длина кодового слова, вновь будет использован алфавит для первой буквы кодового слова.
Чтобы расшифровать шифр Виженера, для начала угадывают длину кодового слова и применяют частотный анализ к каждой n-ной букве послания.
Попробуйте расшифровать эту фразу самостоятельно:
Подсказка длина кодового слова — 4.
Шифр Энигмы
Энигма — это машина, которая использовалась нацистами во времена Второй Мировой для шифрования сообщений.
Есть несколько колёс и клавиатура. На экране оператору показывалась буква, которой шифровалась соответствующая буква на клавиатуре. То, какой будет зашифрованная буква, зависело от начальной конфигурации колес.
Существовало более ста триллионов возможных комбинаций колёс, и со временем набора текста колеса сдвигались сами, так что шифр менялся на протяжении всего сообщения.
Цифровые шифры
В отличие от шифровки текста алфавитом и символами, здесь используются цифры. Рассказываем о способах и о том, как расшифровать цифровой код.
Двоичный код
Текстовые данные вполне можно хранить и передавать в двоичном коде. В этом случае по таблице символов (чаще всего ASCII) каждое простое число из предыдущего шага сопоставляется с буквой: 01100001 = 97 = «a», 01100010 = 98 = «b», etc. При этом важно соблюдение регистра.
Расшифруйте следующее сообщение, в котором использована кириллица:
Шифр A1Z26
Это простая подстановка, где каждая буква заменена её порядковым номером в алфавите. Только нижний регистр.
Попробуйте определить, что здесь написано:
Шифрование публичным ключом
Алгоритм шифрования, применяющийся сегодня буквально во всех компьютерных системах. Есть два ключа: открытый и секретный. Открытый ключ — это большое число, имеющее только два делителя, помимо единицы и самого себя. Эти два делителя являются секретным ключом, и при перемножении дают публичный ключ. Например, публичный ключ — это 1961, а секретный — 37 и 53.
Открытый ключ используется, чтобы зашифровать сообщение, а секретный — чтобы расшифровать.
Как расшифровать код или шифр?
Для этого применяются специальные сервисы. Выбор такого инструмента зависит от того, что за код предстоит расшифровать. Примеры шифраторов и дешифраторов: