Predictive analytics что это

Предиктивная аналитика на пальцах

Я занимаюсь Data Science и Machine Learning в компании Redmadrobot. Нас знают в основном как разработчика мобильных приложений, но практика DS и ML в роботах тоже развита.

Например, мы делаем предиктивную аналитику: это такой класс методов Data Science, с помощью которого можно предсказать какие-то важные для клиента показатели в будущем. В этой статье я на пальцах объясню, как работает предиктивная аналитика и как именно она помогает, например, просчитать выручку и сэкономить деньги.

К нам приходит, скажем, владелец большой розничной сети с вполне конкретным запросом: хочу знать, где открыть новую точку и сколько выручки я с нее получу. Реально ли это? Вполне.

Сначала мы смотрим, какие данные уже есть у заказчика. Их еще называют внутренними данными.

У магазина обычно уже есть какие-то данные по существующим точкам: ассортимент, товарооборот, площадь торгового зала и так далее. Используя только эти данные, мы можем обучить модель и попытаться предсказать, например, выручку для каждой точки: для этого мы делим существующие данные в пропорции 70/30, обучаем модель на 70% данных, а на оставшихся 30% проверяем, насколько точно наша модель научилась предсказывать выручку для точки.

Проблема в том, что точность такой модели может быть невысокой: ей просто не хватает данных для обучения. Другими словами, если у нас есть только внутренние данные от магазинов, этого может быть недостаточно, чтобы с приличной точностью предсказать, сколько магазин будет выручать за месяц.

Что делать в этом случае? Обогащать данные, то есть дополнять то, что уже есть у клиента, внешними данными.

Внешних данных бывает огромное множество.

Погода, курсы валют, график запуска ракет SpaceX — все это внешние данные по отношению к нашему клиенту.

Понятно, что не все внешние данные нам нужны, и не все из них мы можем достать. На этом этапе к нам подключается аналитик: он хорошо разбирается в типах и источниках внешних данных, и может дать экспертную оценку, какие из них будут релевантны. Перед разработкой модели проводится исследование, которое помогает понять, какие данные нам будут полезны, а какие нет.

В случае с магазином нам могут быть полезны, например, такие данные, как проходимость конкретной точки, какие конкуренты стоят рядом, сколько денег выручают торговые точки в этом районе.

На основе этих гипотез мы можем подтянуть внешние данные и обучить модель, уже используя их. Предсказательная сила в этом случае обычно улучшается. Мы можем обучать модель несколько раз, добавляя и убирая какие-то наборы данных, добиваясь все большей точности.

Некоторые сервисы-агрегаторы данных отдают их свободно, иногда даже в удобном формате xml или json — как, например, сервис OpenStreetMap, где можно получить географические данные об объекте. Бывают публичные базы данных, например от Google — это уже собранные большие наборы данных по различным тематикам, которые можно найти в открытом доступе и свободно использовать для обучения своей модели.

Некоторые данные находятся в открытом доступе, но их неудобно использовать. Тогда приходится парсить сайты, то есть вытаскивать данные в автоматическом режиме (до тех пор, пока это законно, конечно — но в большинстве случаев это законно).

А некоторые данные приходится покупать или договариваться об их использовании — например, если работать с операторами фискальных данных, которые могут разрешить использовать некоторую информацию о чеках.

В каждом случае мы решаем, насколько нам нужны эти данные, насколько они повысят точность модели и насколько это важно для заказчика. Предположим, какой-то набор данных позволит нам сделать модель на 10% точнее. Насколько это хорошо для заказчика? Сколько денег он сэкономит или получит, если предсказания нашей модели будут на 10% точнее? Стоит ли это того, чтобы покупать этот набор данных? Чтобы понимать это, нам нужно действительно много знать про клиента — поэтому на этапе понимания задачи мы задаем много вопросов про его бизнес, источники прибыли и особенности работы.

Как проверить (и доказать клиенту), что наша модель действительно имеет смысл? Что она предсказывает результат с нужной нам вероятностью?

Делим все данные, которые у нас есть, случайным образом в пропорции 80/20. С 80% мы будем работать и обучать на них модель, это наша тренировочная выборка. 20% пока отложим — они нам понадобятся позже, чтобы проверить на них модель и убедиться, что все работает. Это валидационная выборка.

Тренировочную выборку делим на обучающую и тестовую выборки (70/30). На 70% обучаем модель. На 30% проверяем. Когда точность нас устраивает — проверяем модель теперь уже окончательно, на валидационной выборке, то есть на тех данных, которые модель никогда не видела. Это позволяет нам убедиться, что модель действительно предсказывает с заданной точностью.

Как правило, точность модели на тестовой и валидационной выборке почти совпадает. Если они сильно отличаются — скорее всего, дело в данных: возможно, они были поделены на обучающую и валидационную выборки не случайным образом, либо данные неоднородны.

Когда мы обсуждаем с клиентом задачу, мы среди прочего определяем с ним критерии успешности проекта. Как понять, что мы выполнили задачу? Какая точность должна быть у получившейся модели и почему именно такая?

Проект мы всегда начинаем с MVP — это относительно дешевая проверка наших гипотез, это модель, которая уже может приносить ценность. Пробуем обучать модель на имеющихся данных и находим некий baseline — минимальную точность модели (например, 75%). Эту точность мы будем все время стараться повышать — до тех пор, пока это рентабельно и имеет смысл.

Когда точность модели нас наконец устраивает, мы упаковываем получившуюся модель в веб-сервис или мобильное приложение с удобным интерфейсом. В нашем примере с открытием магазина и прогнозированием его выручки веб-сервис мог бы выглядеть как интерактивная карта, где разные районы подсвечивались бы разными цветами в зависимости от перспективности открытия магазина здесь, а для каждой выбранной точки отрисовывалась бы плашка с прогнозом выручки магазина, поставленного в этой точке.

Отличие MVP от промышленного решения в том, что модель MVP не может дообучаться. А точность любой модели со временем деградирует, и ее надо дообучать. Поэтому для промышленного решения мы реализуем один из двух вариантов поддержки: либо мы поддерживаем ее самостоятельно, постоянно дообучая модель (и увеличивая ее точность), либо реализуем цикл переобучения модели непосредственно внутри самого софта.

Поддержка со стороны живой команды, конечно, дороже. Но минус автоматического переобучения в том, что оно не может учесть внезапных изменений характера данных. Оно не учтет, например, что в результате каких-нибудь санкций магазин перестал продавать определенные типы товаров и его выручка снизилась. Тогда точность модели сильно упадет, и ее надо будет переобучать вручную, добавляя недостающие данные.

1. Веб-сервис или мобильное приложение с удобным интерфейсом, которое наглядно показывает клиенту ответ на его вопрос (например, где открывать магазин и сколько у него будет выручки).

2. Под капотом — модель, которая с заданной (и оговоренной) точностью выдает предсказания на основе имеющихся данных — внутренних данных клиента и внешних данных, которые мы приняли решение собирать и использовать в этой модели.

3. Поддержку модели, реализованную либо как постоянные доработки модели со стороны живой DS-команды, либо как встроенная функция периодического переобучения внутри самой программы. Модель поддержки выбирается в зависимости от характера данных и бизнес-задач, которую решает модель.

4. Наглядное подтверждение тому, что Data Science и Machine Learning — не просто модные технологии, а инструменты, которые помогают быстро и точно решать реальные задачи бизнеса.

Источник

Предикативная (предиктивная) аналитика
Predictive Analytics

Дальнейшее развитие мирового рынка бизнес-анализа пойдет по пути активного освоения advanced (продвинутой) аналитики, в том числе предикативного (предиктивного) анализа, построения симуляторов и вариативных моделей.

Содержание

Что такое предикативная (предиктивная) аналитика?

Predictive analytics что это. 840px %D0%9E%D1%82 %D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 %D0%BA %D0%BF%D1%80%D0%B5%D0%B4%D1%81%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B5. Predictive analytics что это фото. Predictive analytics что это-840px %D0%9E%D1%82 %D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 %D0%BA %D0%BF%D1%80%D0%B5%D0%B4%D1%81%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B5. картинка Predictive analytics что это. картинка 840px %D0%9E%D1%82 %D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85 %D0%BA %D0%BF%D1%80%D0%B5%D0%B4%D1%81%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B5

Наиболее известный способ использования прогностической аналитики – это применение скоринговых моделей для оценки платежеспособности клиента при выдаче кредитов в банке. Любая скоринговая модель строится на исторических данных, и если в прошлом, какая-либо группа клиентов была уличена в несвоевременном гашении кредитов, а вы по каким-либо характеристикам схожи с этой группой, то скорее всего в выдаче кредитов вам откажут.

Однако это не все области, где применяется предикативная аналитика, ее можно применять для разработки продуктов, для выбора потенциальной аудитории, для выбора следующего продукта, который вы можете предложить клиенту (Next Best Offer) и множестве других.

Родственным по отношению к предикативной аналитике является понятие data mining, так как предикативная аналитика использует частично подобные методы. Центральной же сущностью предиктивной аналитики является задача определение предиктора или нескольких предикторов (параметров или сущностей, которые влияют на прогнозируемое событие). Например, страховые компании выделяю такие предикторы, как возраст, стаж вождения при определении страховой премии. Множество этих предикторов образует модель предиктивной аналитики, которая предсказывает определенное событие в будущем с какой-то степенью вероятности.

Аналитики Gartner полагают, что дальнейшее развитие мирового рынка бизнес-анализа пойдет по пути активного освоения advanced (продвинутой) аналитики, в том числе предикативного анализа, построения симуляторов и вариативных моделей. Возможность к построению таких моделей в 2013 году в Gartner назвали 15 обязательным блоком корпоративных BI-платформ.

Аналитика класса advanced использует статистику, описательные и предикативные инструменты data mining (разведки данных), симуляторы и оптимизационные средства. Конечная цель применения всех этих инструментов – принятие решений, решение бизнес-задач и идентификация возможностей для составления наилучших прогнозов, выявления процессов, паттернов и прочих закономерностей.

Чтобы предикативный анализ был успешным, в Forrester рекомендуют четко следовать следующим стадиям: постановка цели, получение данных из различных источников, подготовка данных, создание предикативной модели, оценка модели, внедрение модели, мониторинг эффективности модели.

Схема внедрения инструментов предикативного анализа

Predictive analytics что это. Predicative forrester 2013. Predictive analytics что это фото. Predictive analytics что это-Predicative forrester 2013. картинка Predictive analytics что это. картинка Predicative forrester 2013

Forrester Research, 2013

Области применения

В отличии от data discovery средства предикативной аналитики адресованы специалистам, поэтому не применяются столь широко. По данным Gartner за 2012 год, только 13% пользователей BI широко задействуют средства предикативного анализа. Менее 3% используют такие методы как математическое моделирование, симуляторы и оптимизацию.

Эксперты считают, что не стоит ждать массовых внедрений в этой области, но тренд будет постепенно меняться. Причина тому – появление феномена больших данных, который подталкивает организации к поиску новых средств обработки информации. В Gartner считают, что те компании, которые будут применять продвинутую аналитику к большим данным, будут расти на 20% быстрее конкурентов.

Торговля

Predictive analytics что это. 300px %D0%9A%D0%B0%D1%80%D1%82%D0%B0 %D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 %D0%BF%D1%80%D0%B5%D0%B4%D0%B8%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B8. Predictive analytics что это фото. Predictive analytics что это-300px %D0%9A%D0%B0%D1%80%D1%82%D0%B0 %D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 %D0%BF%D1%80%D0%B5%D0%B4%D0%B8%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B8. картинка Predictive analytics что это. картинка 300px %D0%9A%D0%B0%D1%80%D1%82%D0%B0 %D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 %D0%BF%D1%80%D0%B5%D0%B4%D0%B8%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0%B9 %D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B8

Прогнозирование потребительского спроса и планирование акций [2]

Выведение значимых товарных позиций для покупателей (Key Value Item Analysis)

Оптимизация регулярной и акционной цены

Выделение групп покупателей со схожими поведенческими характеристиками путем многомерного анализа данных
Customer Segmentation, Behavioral Targeting, Churn Prevention

Предиктивная аналитика на производстве

Данные о протекании технологического процесса не всегда используются эффективно, в то время как их можно использовать для оптимизации операционных процессов и повышения технико-экономических показателей производства. Оптимизацию можно выполнить на любом типе производства с серьезным уровнем автоматизации, организованным сбором и длительным хранением информации. Для этого успешно применяются интеллектуальные системы, которые могут проанализировать состояние технологического процесса в реальном времени, спрогнозировать дальнейшее протекание процесса, определить уровень оптимальности и, при необходимости, изменить управляющие параметры или дать рекомендации диспетчеру. Для решения данных задач с помощью средств машинного обучения создается предиктивная математическая модель технологического процесса. Она анализирует входные параметры, в реальном времени выдает прогноз протекания процесса и предложения по его оптимизации. Эта модель объединяется с АСУТП, MES и ERP-системами предприятия.

Еще одна задача для предиктивных алгоритмов – это техническое обслуживание и ремонт оборудования. В основном, предприятия используют базовые механизмы контроля, предоставленные производителями оборудования. Но потенциал этих средств ограничен, поскольку они не позволяют проанализировать дополнительные факторы, влияющие на состояние оборудования, и заранее спрогнозировать критическую ситуацию. Таким образом, сотрудники отдела технического обслуживания получают множество данных, но не знают, как эти данные связаны между собой. В итоге реакция от ремонтных служб следует только после отказа оборудования, что ведет за собой простои, и, следовательно, дополнительные расходы. Прогнозная аналитика средствами машинного обучения и искусственного интеллекта проводит непрерывный анализ больших данных, выполняет визуализацию данных о состоянии оборудования на текущий момент и прогнозирует сценарии возникновения отказов оборудования. В результате сокращаются внеплановые простои, оптимизируются работы по ТОРО, уменьшается время техобслуживания, а управляющий персонал получает углубленный анализ причин отказов оборудования.

Мировой рынок

Прогноз Transparency Market Research 2017 года в 2019й

Наиболее востребована предикативная аналитика в отраслях, работающих с конечными потребителями, таких как банковские и финансовые сервисы, страхование, госсектор, фармацевтика, телеком и ИТ, ритейл. На эти сегменты пришлось 71,8% объема внедрений в 2012 году. На протяжении прогнозного периода максимальная доза проектов придется на банковский сектор, финансовые сервисы, страхование. Впрочем, наиболее быстро число проектов будет расти в рознице и на производстве.

Аналитики отмечают, что рост случаев мошенничества, неплатежей, угрозы несоответствия многочисленным правилам и регламентам вынуждают бизнес все чаще обращаться к предикативному анализу с целью построения футуристических моделей, позволяющих принимать превентивные меры по отношению к неблагоприятным событиям.

Такие разные типы программного обеспечения как системы пользовательской аналитики, аналитики информационной безопасности и управлениям кампаниями составили около 50% рынка предикативной аналитики в 2012 году. Эти решения используются для оптимизации организационных процессов в продажах и маркетинге, управления клиентами и каналами продаж, финансового и риск менеджмента и так далее.

Среди региональных рынков крупнейшим рынком систем предикативного анализа будет Северная Америка, причем здесь спрос на прогнозные решения придет со стороны компаний, активно решающих вопросы работы с большими данными (big data). Именно поэтому в скором времени на аренду предикативной аналитики выйдет все ключевые вендоры решений для big data, включая SAS Institute, SAP, Oracle, IBM, Microsoft, Teradata и Tableau Software.

Рынок при этом остается во многом поделен между крупнейшими игроками: на первую пятерку поставщиков пришлось 80% объема рынка в 2012 году. Среди других заметных игроков отмечаются Fair Isaac, Tibco, Information Builders, Alteryx, Qlik (QlikTech) и MicroStrategy.

Источник

Предиктивная аналитика: 3 метода и системы

Предиктивная аналитика (от английского “predictive analytics”) – это предсказательная или прогнозная аналитика.

Если разбираться глубже, то это совокупность методов анализа данных с их интерпретацией, которая помогает на основе прошлых событий принять с большой точностью верное решение в будущем.

Происходит это за счет нахождения параметров среди данных, которые влияют на другие. Далее определяется степень влияния, и происходит магия: Вы получаете картину того, как изменится Ваш бизнес, если какой-то параметр изменит свое значение.

Зачем нужна бизнесу

Предикативная аналитика дает преимущество перед Вашими конкурентами. Представьте, что Вы всегда владеете прогнозной информацией, знаете, что будет с бизнесом завтра, и какое решение более оптимальное в этой ситуации.

Важно. Сразу хочу извиниться перед математиками: это статья будет написана крайне простым языком, и для лучшего понимания, термины могут быть заменены на человеческие понятия, а принципы описаны ненаучно.

А теперь ответьте себе на один вопрос, только честно: “На основе чего Вы приняли последнее решение в Вашем бизнесе?” Ответили?

Наверняка что-то из разряда: “у меня большой опыт”, “раньше всегда так принимались решения”, “мне посоветовал мой маркетолог, жена, брат, сват” и т.д. И вполне вероятно, что это решение было верное, но случайное.

А теперь я Вам расскажу, как бы Вы его принимали, опираясь на предиктивную аналитику. Только учтите, что это лишь малая часть способов её применения.

Predictive analytics что это. prediktivnaya analitika chto eto. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika chto eto. картинка Predictive analytics что это. картинка prediktivnaya analitika chto eto Предсказательная аналитика в разных сферах бизнеса

Кстати. Для поиска конкурентов рекомендую следующие сервисы: Livedune (по промокоду “INSCALE” скидка 30% +7 дней доступа), Publer, Spywords, Keyso. Они точно помогут Вам держать руку на пульсе.

1. Оптимизация в ритейле и FMCG

В них это работает следующим образом: если Вы знаете, какие продукты пользуются спросом у покупателей, можно решить сразу несколько задач: каких товаров и сколько должно быть постоянно в Вашем магазине (интернет-магазине), что предложить покупателю вдобавок к его покупке, какую цену оптимально установить на определенный товар.

Пример:

Вы владелец интернет-магазина одежды. У Вас есть информация, что 80% клиентов мужского пола вместе с пиджаком покупают еще и рубашку.

Так вот, зная это, Вы сможете предлагать всем мужчинам, которые заказали только пиджак, заказать еще и рубашку. Наверняка многие согласятся, т.к. статистика не врет. Тем самым Вы повысите средний чек заказа.

2. Оптимизация производства

Если Вы собираете информацию о параметрах, влияющих на работу оборудования, а не надеетесь только на инструкцию по эксплуатации, то намного проще предотвратить его поломки и провести необходимое обслуживание.

Пример:

У Вас своя конвейерная линия, и уже не раз случалось, что при повышенных температурах воздуха оборудование выходит из строя. Зная это и прогноз погоды на ближайшее время, Вы сможете предотвратить повышение температуры в цеху, тем самым избежите простоя.

Predictive analytics что это. prediktivnaya analitika v proizvodstve 1. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika v proizvodstve 1. картинка Predictive analytics что это. картинка prediktivnaya analitika v proizvodstve 1 Статистика работы оборудования

3. Обнаружение мошенничества

Если у Вас есть статистика по недобросовестным клиентам, например, по их полу, возрасту, профессии и другим признакам, то Вы сможете их отсеивать еще на стадии анкетирования.

Пример:

Вы занимаетесь банковскими услугами, и у Вас есть собранная информация о том, что клиенты от 18 до 21 года, а также судимые чаще всего не производят выплаты по кредитам. Зная это, Вы можете не сотрудничать с клиентами из этих сегментов.

Predictive analytics что это. prediktivnaya analitika moshennichestvo. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika moshennichestvo. картинка Predictive analytics что это. картинка prediktivnaya analitika moshennichestvo Статистика мошенничества

4. Управление рисками

Если в Вашем бизнесе есть риск, то с помощью прогнозного анализа прошлых негативных событий можно влиять на их предотвращение в будущем или же лучше страховаться от них.

Пример:

Вы занимаетесь страхованием здоровья, и у Вас есть статистика, что у людей из промышленных профессий риск травм выше, чем у менеджеров.

Соответственно, чтобы компенсировать риски от страхования людей с пром. предприятий, Вы запросите у них бОльшую страховую сумму и будете стараться диверсифицироваться путем страхования менеджеров.

Predictive analytics что это. prediktivnaya analitika riski. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika riski. картинка Predictive analytics что это. картинка prediktivnaya analitika riski Минимизация рисков

5. Маркетинговый и клиентский анализ

Если Вы собираете информацию о Ваших клиентах, их поведении, величине и частоте покупок, Вы сможете смоделировать будущее поведение клиентов.

Зачем это нужно? Как минимум, для понимания людей, а в идеале для улучшения клиентского сервиса на каждом этапе взаимодействия клиента с Вашим бизнесом.

Пример:

Вы владелец кинотеатра. Благодаря системам видеонаблюдения получили среднестатистический путь зрителя: он открывает дверь, отряхивает ноги, проходит к кассе, покупает билет, проходит в гардероб, посещает туалет и ждет открытия дверей в кинозал.

Уже только в этих местах Вы можете организовать дополнительные рекламные размещения.

Также можно сделать посещение кинотеатра удобнее: поставить самооткрывающиеся двери, положить дополнительный коврик при входе, организовать автоматическую систему покупки билетов, увеличить количество работников гардероба и т.д.

6. Продажи

Благодаря аналитике в продажах, Вы сможете точно знать, какие показатели непосредственно влияют на выручку и прибыльность бизнеса, а какие косвенно.

Пример:

Вы сможете посмотреть на статистику прошлого года по конверсии из заявок в продажи и оценить, что влияло на неё положительно, а что отрицательно. После чего составите план действий на текущий год, чтобы достигнуть поставленных целей.

7. Работа с персоналом

Ведение учета причин добровольных увольнений и фиксация их зависимости от срока работы поможет снизить текучку кадров, повысить лояльность Ваших сотрудников или хотя бы будете готовы к их уходу.

Пример:

Вы заметили, что персонал, который проработал в компании 2 года на одной должности, увольняется по причине того, что им становится неинтересно. С этой информацией Вы сможете периодически устраивать ротацию в коллективе или хотя бы заблаговременно подготовить замену этому сотруднику.

Predictive analytics что это. prediktivnaya analitika persomal. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika persomal. картинка Predictive analytics что это. картинка prediktivnaya analitika persomal Причины увольнений

3 кита ПРЕДИКТИВНОЙ аналитики

Аналитика в целом (и прогнозная в частности) подразумевает под собой работу с данными. Там где их нет – нечего анализировать, и нет почвы для выводов. Поэтому, когда Вы принимаете решение, не опираясь на информацию, Вы превращаетесь из предпринимателя в гадалку. Не надо так! А теперь к китам.

Predictive analytics что это. prediktivnaya analitika osnovnye komponenty. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika osnovnye komponenty. картинка Predictive analytics что это. картинка prediktivnaya analitika osnovnye komponenty Основные компоненты

Кит 1. Сбор данных

Чтобы работать с информацией, её нужно собрать – все логично. Но какие собирать и как? На эти вопросы нет правильных ответов. Для каждого бизнеса необходимы данные и методы. Поэтому здесь работает правило: чем больше, тем лучше. Но все же перечислю основные:

И далее, далее, далее… Продолжать можно бесконечно. В оффлайне это датчики движения и сбора информации, wi-fi мониторы, системы умного видеонаблюдения, кассовые аппараты и товароучетные системы.

Тем, кто в танке и все ведет в книгах учета, на листочках и тетрадях – не позавидуешь. В этом случае сбор данных ограничивается наблюдением, проведением опросов и подобными инструментами. И если Вы сейчас подумали “о, у меня так”, то просыпайтесь скорей и вступайте в эру информационных технологий.

Кит 2. Исследовательский анализ

Здесь начинается работа с данными. На этом этапе нужно из их совокупности найти ранее неизвестные, непонятные сведения. А также и полезные практические интерпретации собранных знаний, которые необходимы для принятия обоснованных решений.

Это понятие называют “data mining” – обнаружение знаний в данных. Основу их исследовательского составляют различные методы классификации, моделирования, а также статистические методы. Об основных я расскажу чуть ниже.

Скажу сразу, для проведения эффективного анализа необходима достаточно крупная база сведений. Так в этом случае работает закон больших чисел – чем больше, тем более объективными будут выводы. Исследовательский анализ информации решает задачи:

Кит 3. Предиктивное моделирование

То, ради чего и нужна система предсказательной аналитики – создание высокоточных прогнозов. После предыдущих этапов у Вас есть массив данных, нам нужны их интерпретации. То есть различные классы, кластеры, зависимости, ассоциации и отклонения от нормы. На этом этапе Вам необходимо:

Основные типы и их методы

В основе предиктивной аналитики лежат статистические методы. Также важно понимать, что её система тесно связана с big data и искусственным интеллектом, поэтому основана на машинном обучении. Теперь к делу.

Типов ПА всего существует не 2, но я расскажу именно об этих, потому что они точно помогут Вам в бизнесе.

Predictive analytics что это. prediktivnaya analitika tipy i metody. Predictive analytics что это фото. Predictive analytics что это-prediktivnaya analitika tipy i metody. картинка Predictive analytics что это. картинка prediktivnaya analitika tipy i metody Основные типы и методы

Тип 1. Контролируемое обучение

Или обучение с учителем, подразумевает под собой построение (обучение) модели по исходным данным и выходящим результатам. То есть в построении модели известны и параметры события, и результат, на который они влияют.

Например, если мы знаем, что на выручку влияет число покупок и средний чек, а нам необходимо узнать, каким образом влияет тот или иной параметр на её размер, то мы прибегнем к контролируемому обучению. Оно включает два ключевых метода предиктивной аналитики:

1.1. Регрессия

Это самый популярный метод. Применяется для получения количественных ответов или числовой ценности. Например, для расчета выручки по конкретным параметрам. При регрессии используется:

Взаимосвязь между параметрами и результатом и есть предиктивная модель. Кстати, помимо взаимозависимости рассчитывается и вес каждого параметра – то, в какой степени каждый из параметров влияет на конечный результат.

Чтобы было понятнее, вернемся к той же выручке. У нас есть показатели выручки, среднего чека и количества клиентов за три месяца:

МесяцКоличество клиентовСредний чекВыручка
1103 00030 000
2113 00033 000
3103 30033 000

Из этих данных видно, что зависимость выручки от количества клиентов и среднего чека прямая пропорциональная.

Выручка = Количество клиентов * Средний чек.

Зная эту формулу, Вы сможете прогнозировать выручку и влиять на нее, сосредотачивая усилия на росте предикторов. Ну или же понять, сколько Вам необходимо привлечь клиентов и при каком среднем чеке, чтобы получить желаемую выручку.

Это выглядит просто, когда Вы знаете зависимость. Но даже если в этом уравнении разложить, из чего складывается количество клиентов, и какой параметр в какой степени влияет на этот показатель, то получится большая и достаточно сложная цепочка.

1.2. Классификация

Этот метод связан с причислением объекта к какому-либо классу по определенным параметрам. Его задача определить, к какому именно.

Работает это так: в базу данных загружаются все известные переменные объектов, например, по каждому человеку загружают пол, возраст, профессию и уровень дохода. Далее алгоритм вычисляет зависимость одного от другого и предсказывает неизвестный параметр объекта по известным. Обычно в бизнесе этот метод применяется для различных сегментаций.

Вы занимаетесь оптовой торговлей одежды, и размер скидок зависит от объема закупок товара. Первый способ определить уровень скидки новому клиенту – поработать с ним определенное время.

Если же Вы используете классификационный метод, то имея инфу о прошлых клиентах, например, о местоположении, об ассортименте, Вы можете рассчитать влияние параметров на объем закупок Вашей продукции.

Вывод: зная это, Вы сможете предугадать, какой объем закупок следует ожидать от нового клиента. Ну и не стоит забывать, что чем больше у Вас данных, тем более точными будут прогнозы.

Кстати. Если Вам нужна детальная аналитика, то рекомендую сервисы: Roistat (по промокоду “INSCALE1120” +7500 руб. на баланс сервиса для тестирования) или же Callibri (по промокоду “76C6IMERUQ” + 500 руб.).

2. Неконтролируемое обучение

В этом типе предиктивное моделирование происходит только по входящим данным без привязки к ответу. Ответ подбирается автоматически в процессе обучения. Это требуется для поиска и анализа скрытых закономерностей внутри сведений о которых ранее было неизвестно. Основной метод – кластеризация.

2.1. Кластеризация

К этому методу предиктивной аналитики относятся задачи:

Для бизнеса она полезна тем, что на основе кластерного анализа можно более четко представлять взаимосвязи и зависимости. Помимо этого, он помогает выявлять отклонения и новые тенденции.

Возьмем тот же пример, что и в классификационном методе. Только если там нам и нашей модели уже известна зависимость объема закупок от параметров (местоположение, рекламные вложения и ассортимент), то в этом случае мы их не знаем.

Так вот, мы загружаем данные о наших клиентах и алгоритм определяет, есть ли взаимозависимость между ними, и если есть, то какая.

Инструменты предиктивной аналитики

Есть много инструментов и программных продуктов. Они отличаются между собой функциональностью и удобством пользования. Некоторые из них нужны для создания предиктивных моделей, некоторые для их интерпретации, а самые продвинутые – для того и другого. При выборе инструмента обратите внимание на:

Так вот, в результате функционирования таких систем, управляющие специалисты могут своевременно формировать гипотезы и проверять их, принимать точные и обоснованные решения.

НазваниеЦенаОписаниеПреимущества
Язык программирования RБесплатноФаворит рынка, это связано с тем, что в процессе обучения специалистов подобного профиля задействован именно этот язык программирования1. Открытый исходный код;
2. Расширяемая аналитическая среда;
3. Возможность визуализации представления данных;
4. Большое сообщество пользователей;
5. Разрабатывался статистиками для статистиков.
Язык программирования PythonБесплатноНабирает популярность. Основная идея: хороший язык программирования – простой и доступный1. Простой и интуитивно-понятный;
2. Встроен инструмент для тестирования;
3. Многоцелевой язык.
RapidMinerБесплатноСреда для прогнозной аналитики, которая поддерживает все этапа анализа, проверки, визуализацию и оптимизацию данных1. Не нужно знать программирования, метод визуального программирования;
2. Расширяемая система, поддержка языка R;
3. Возможность оценки тональности текста;
4. Сообщество пользователей и поддержка новичков.
KnimeБесплатноСистема для анализа данных, которая даже в базовом функционале имеет мощные инструменты1. Широкие возможности анализа текста;
2. Возможность веб-анализа, анализа изображений и социальных сетей;
3. Интуитивно-понятный интерфейс без необходимости программирования.
IBM SPSS ModelerОт 80$Низкая требовательность к новичкам, благодаря автоматическому подбору необходимой статистической модели1. Автоматическое моделирование и выбор наиболее эффективное модели;
2. Геопространственная аналитика;
3. Поддержка технологий с открытым исходным кодом (R, Python);
4. Аналитика текста.
IBM Watson AnalyticsОт 250$Один из наиболее мощных инструментов для предиктивной аналитики и анализа больших данных1. Возможность работы в облаке;
2. Расширенные возможности визуализации;
3. Интуитивно-понятный интерфейс без необходимости программирования;
4. Быстрота обработки данных.
SAS Enterprise MinerОт 160$Система разработанная для проектирования точных предсказательных и описательных моделей на основе big-data1. Клиент-серверное решение – позволяет оптимизировать процессы аналитики;
2. Нет необходимости в программировании;
3. Продвинутый скоринг – применение модели к новым данным;
4. Самодокументируемая проектная среда.
SAP BusinessObjects Predictive AnalyticsОт 200$SAP в 2015 году был награжден статусом лидера рынка в предсказательной аналитики1. Большая автоматизированность, легкость в переобучении модели;
2. Расширенные возможности визуализации;
3. Возможность расширения языком R.
Oracle Big Data PreparationОт 150$Благодаря интуитивному и интерактивному интерфейсу привлекает пользователей без навыков программирования1. Работа в облаке;
2. Простота использования;
3. Широкие возможности интеграции с другими облачными сервисами.

Коротко о главном

Благодаря предиктивной аналитике Вы сможете принимать более взвешенные решения, подготовитесь к непредвиденным ситуациям и повысите эффективность Вашего бизнеса в целом.

Но это не фундамент для бизнеса, а инструмент, повышающий эффективность предприятия. Поэтому бОльшую пользу он принесет уже устоявшейся компании, у которой налажены основные бизнес-процессы и сбор данных.

ПА сложный и ресурсоемкий процесс, требующий высокой квалификации как в статистике, так и в работе с информацией. Кстати, я ниже оставлю историю её появления, если интересно, почитайте.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *