Reinforcement learning что это

Введение в обучение с подкреплением: от многорукого бандита до полноценного RL агента

Привет, Хабр! Обучение с подкреплением является одним из самых перспективных направлений машинного обучения. С его помощью искусственный интеллект сегодня способен решать широчайший спектр задач: от робототехники и видеоигр до моделирования поведения покупателей и здравоохранения. В этой вводной статье мы изучим главную идею reinforcement learning и с нуля построим собственного самообучающегося бота.

Reinforcement learning что это. . Reinforcement learning что это фото. Reinforcement learning что это-. картинка Reinforcement learning что это. картинка

Введение

Основное отличие обучения с подкреплением (reinforcement learning) от классического машинного обучения заключается в том, что искусственный интеллект обучается в процессе взаимодействия с окружающей средой, а не на исторических данных. Соединив в себе способность нейронных сетей восстанавливать сложные взаимосвязи и самообучаемость агента (системы) в reinforcement learning, машины достигли огромных успехов, победив сначала в нескольких видеоиграх Atari, а потом и чемпиона мира по игре в го.

Если вы привыкли работать с задачами обучения с учителем, то в случае reinforcement learning действует немного иная логика. Вместо того, чтобы создавать алгоритм, который обучается на наборе пар «факторы — правильный ответ», в обучении с подкреплением необходимо научить агента взаимодействовать с окружающей средой, самостоятельно генерируя эти пары. Затем на них же он будет обучаться через систему наблюдений (observations), выигрышей (reward) и действий (actions).

Очевидно, что теперь в каждый момент времени у нас нет постоянного правильного ответа, поэтому задача становится немного хитрее. В этой серии статей мы будем создавать и обучать агентов обучения с подкреплением. Начнем с самого простого варианта агента, чтобы основная идея reinforcement learning была предельно понятна, а затем перейдем к более сложным задачам.

Многорукий бандит

Самый простой пример задачи обучения с подкреплением — задача о многоруком бандите (она достаточно широко освещена на Хабре, в частности, тут и тут). В нашей постановке задачи есть n игровых автоматов, в каждом из которых фиксирована вероятность выигрыша. Тогда цель агента — найти слот-машину с наибольшим ожидаемым выигрышем и всегда выбирать именно ее. Для простоты у нас будет всего четыре игровых автомата, из которых нужно будет выбирать.

По правде говоря, эту задачу можно с натяжкой отнести к reinforcement learning, поскольку задачам из этого класса характерны следующие свойства:

В области обучения с подкреплением есть и другой подход, при котором агенты обучают value functions. Вместо того, чтобы находить оптимальное действие в текущем состоянии, агент учиться предсказывать, насколько выгодно находиться в данном состоянии и совершать данное действие. Оба подхода дают хорошие результаты, однако логика policy gradient более очевидна.

Policy Gradient

Как мы уже выяснили, в нашем случае ожидаемый выигрыш каждого из игровых автоматов не зависит от текущего состояния среды. Получается, что наша нейросеть будет состоять лишь из набора весов, каждый из которых соответствует одному игровому автомату. Эти веса и будут определять, за какую ручку нужно дернуть, чтобы получить максимальный выигрыш. К примеру, если все веса инициализировать равными 1, то агент будет одинаково оптимистичен по поводу выигрыша во всех игровых автоматах.

Для обновления весов модели мы будем использовать e-жадную линию поведения. Это значит, что в большинстве случаев агент будет выбирать действие, максимизирующее ожидаемый выигрыш, однако иногда (с вероятностью равной e) действие будет случайным. Так будет обеспечен выбор всех возможных вариантов, что позволит нейросети «узнать» больше о каждом из них.

Reinforcement learning что это. 73b8775356d5b4d6bef1332ef198a75e. Reinforcement learning что это фото. Reinforcement learning что это-73b8775356d5b4d6bef1332ef198a75e. картинка Reinforcement learning что это. картинка 73b8775356d5b4d6bef1332ef198a75e

Интуитивно понятно, что функция потерь должна принимать такие значения, чтобы веса действий, которые привели к выигрышу увеличивались, а те, которые привели к проигрышу, уменьшались. В результате веса будут обновляться, а агент будет все чаще и чаще выбирать игровой автомат с наибольшей фиксированной вероятностью выигрыша, пока, наконец, он не будет выбирать его всегда.

Реализация алгоритма

Бандиты. Сначала мы создадим наших бандитов (в быту игровой автомат называют бандитом). В нашем примере их будет 4. Функция pullBandit генерирует случайное число из стандартного нормального распределения, а затем сравнивает его со значением бандита и возвращает результат игры. Чем дальше по списку находится бандит, тем больше вероятность, что агент выиграет, выбрав именно его. Таким образом, мы хотим, чтобы наш агент научился всегда выбирать последнего бандита.

Агент. Кусок кода ниже создает нашего простого агента, который состоит из набора значений для бандитов. Каждое значение соответствует выигрышу/проигрышу в зависимости от выбора того или иного бандита. Чтобы обновлять веса агента мы используем policy gradient, то есть выбираем действия, минимизирующие функцию потерь:

Обучение агента. Мы будем обучать агента, путем выбора определенных действий и получения выигрышей/проигрышей. Используя полученные значения, мы будем знать, как именно обновить веса модели, чтобы чаще выбирать бандитов с большим ожидаемым выигрышем:

Полный Jupyter Notebook можно скачать тут.

Решение полноценной задачи обучения с подкреплением

Теперь, когда мы знаем, как создать агента, способного выбирать оптимальное решение из нескольких возможных, перейдем к рассмотрению более сложной задачи, которая и будет представлять собой пример полноценного reinforcement learning: оценивая текущее состояние системы, агент должен выбирать действия, которые максимизируют выигрыш не только сейчас, но и в будущем.

Системы, в которых может быть решена обучения с подкреплением называются Марковскими процессами принятия решений (Markov Decision Processes, MDP). Для таких систем характерны выигрыши и действия, обеспечивающие переход из одного состояния в другое, причем эти выигрыши зависят от текущего состояния системы и решения, которое принимает агент в этом состоянии. Выигрыш может быть получен с задержкой во времени.

Формально Марковский процесс принятия решений может быть определен следующим образом. MDP состоит из набора всех возможных состояний S и действий А, причем в каждый момент времени он находится в состоянии s и совершает действие a из этих наборов. Таким образом, дан кортеж (s, a) и для него определены T(s,a) — вероятность перехода в новое состояние s’ и R(s,a) — выигрыш. В итоге в любой момент времени в MDP агент находится в состоянии s, принимает решение a и в ответ получает новое состояние s’ и выигрыш r.

Для примера, даже процесс открывания двери можно представить в виде Марковского процесса принятия решений. Состоянием будет наш взгляд на дверь, а также расположение нашего тела и двери в мире. Все возможные движения тела, что мы можем сделать, и являются набором A, а выигрыш — это успешное открытие двери. Определенные действия (например, шаг в сторону двери) приближают нас к достижению цели, однако сами по себе не приносят выигрыша, так как его обеспечивает только непосредственно открывание двери. В итоге, агент должен совершать такие действия, которые рано или поздно приведут к решению задачи.

Задача стабилизации перевернутого маятника

Воспользуемся OpenAI Gym — платформой для разработки и тренировки AI ботов с помощью игр и алгоритмических испытаний и возьмем классическую задачу оттуда: задача стабилизации перевернутого маятника или Cart-Pole. В нашем случае суть задачи заключается в том, чтобы как можно дольше удерживать стержень в вертикальном положении, двигая тележку по горизонтали:
Reinforcement learning что это. image loader. Reinforcement learning что это фото. Reinforcement learning что это-image loader. картинка Reinforcement learning что это. картинка image loader

В отличии от задачи о многоруком бандите, в данной системе есть:

Таким образом, каждое действие агента будет совершено с учетом не только мгновенного выигрыша, но и всех последующих. Также теперь мы будем использовать скорректированный выигрыш в качестве оценки элемента A (advantage) в функции потерь.

Реализация алгоритма

Импортируем библиотеки и загрузим среду задачи Cart-Pole:

Агент. Сначала создадим функцию, которая будет дисконтировать все последующие выигрыши на текущий момент:

Теперь создадим нашего агента:

Обучение агента. Теперь, наконец, перейдем к обучению агента:

Полный Jupyter Notebook вы можете посмотреть тут. Увидимся в следующих статьях, где мы продолжим изучать обучение с подкреплением!

Источник

Что не так с обучением с подкреплением (Reinforcement Learning)?

Reinforcement learning что это. . Reinforcement learning что это фото. Reinforcement learning что это-. картинка Reinforcement learning что это. картинка

Еще в начале 2018 года вышла статья Deep Reinforcement Learning Doesn’t Work Yet («Обучение с подкреплением пока не работает»). Основная претензия которой сводилась к тому, что современные алгоритмы обучения с подкреплением требуют для решения задачи примерно столько же времени, как и обычный случайный поиск.

Изменилось ли что-то с того времени? Нет.

Обучение с подкреплением считается одним из трех основных путей к созданию сильного ИИ. Но трудности, с которыми сталкивается эта область машинного обучения, и методы, которыми ученые пытаются бороться с этими трудностями, наводят на мысль что, возможно, с самим этим подходом имеются фундаментальные проблемы.

Постойте, что значит один из трех? А остальные два какие?

С учетом успеха нейронных сетей в последние годы и анализом того, как они работают с высокоуровневыми когнитивными способностями, считавшимися ранее характерными только для человека и высших животных, на сегодняшний день в научном сообществе сложилось мнение, что можно выделить три основных подхода к созданию сильного ИИ на основе нейронных сетей, которые можно считать более менее реалистичными:

1. Обработка текстов

В мире накоплено огромное количество книг и текста в интернете, в том числе учебников и справочников. Текст удобен и быстр для обработки на компьютере. Теоретически, этого массива текстов должно хватить для обучения сильного разговорного ИИ.

При этом подразумевается, что в этих текстовых массивах отражено полное устройство мира (как минимум, оно описано в учебниках и справочниках). Но это совершенно не факт. Тексты как вид представления информации сильно оторваны от реального трехмерного мира и течения времени, в котором мы живем.

Хорошими примерами ИИ, обученными на текстовых массивах, являются чат-боты и автоматические переводчики. Так как для перевода текста нужно понять смысл фразы и пересказать его новыми словами (на другом языке). Существует распространенное заблуждение, что правила грамматики и синтаксиса, включая описание всех возможных исключений, полностью описывают конкретный язык. Это не так. Язык — это лишь вспомогательный инструмент в жизни, он легко меняется и адаптируется под новые ситуации.

Проблема обработки текста (хоть экспертными системами, хоть нейронными сетями) в том, что не существует набора правил, какие фразы в каких ситуациях нужно применять. Обратите внимание — не правил построения самих фраз (чем занимается грамматика и синтаксис), а именно какие фразы в каких жизненных ситуациях. В одной и той же ситуации люди произносят на разных языках фразы, которые вообще никак друг с другом не связаны с точки зрения структуры языка. Сравните фразы при крайней степени удивления: «о, боже!» и «o, holy shit!». Ну и как между ними провести соответствие, зная языковую модель? Да никак. Так случайно сложилось исторически. Нужно знать ситуацию и что в ней обычно говорят на конкретном языке. Именно из-за этого автоматические переводчики пока такие несовершенные.

Можно ли выделить эти знания чисто из массива текстов — неизвестно. Но если автоматические переводчики станут идеально переводить, не делая глупых и нелепых ошибок, то это будет доказательством, что создание сильного ИИ только на основе текста возможно.

2. Распознавание изображений

Посмотрите на это изображение

Reinforcement learning что это. paodndrl6p5dkuhig3rwo68cu q. Reinforcement learning что это фото. Reinforcement learning что это-paodndrl6p5dkuhig3rwo68cu q. картинка Reinforcement learning что это. картинка paodndrl6p5dkuhig3rwo68cu q

Глядя на эту фотографию мы понимаем, что съемка велась ночью. Судя по флагам, ветер дует справа налево. А судя по правостороннему движению, дело не происходит в Англии или Австралии. Никакая эта информация не указана явно в пикселях картинки, это внешние знания. На фото есть лишь признаки, по которым мы можем воспользоваться знаниями, полученными из других источников.

О том и речь… И найдите себе девушку, наконец

Поэтому считается, что если обучить нейронную сеть распознавать объекты на картинке, то у нее сложится внутреннее представление о том, как устроен реальный мир. И это представление, полученное по фотографиям, уж точно будет соответствовать нашему реальному и настоящему миру. В отличие от массивов текстов, где это не гарантировано.

Ценность нейронных сетей, обученных на массиве фотографий ImageNet (а теперь и OpenImages V4, COCO, KITTI, BDD100K и другие) вовсе не в факте распознавания котика на фото. А в том, что хранится в предпоследнем слое. Именно там находится набор высокоуровневых features, описывающих наш мир. Вектора в 1024 числа достаточно, чтобы из него получить описание 1000 разных категорий объектов с 80% точностью (и в 95% случаев правильный ответ будет в 5 ближайших вариантах). Только вдумайтесь в это.

Именно поэтому эти features из предпоследнего слоя так успешно используются в совершенно различных задачах по компьютерному зрению. Через Transfer Learning и Fine Tuning. Из этого вектора в 1024 числа можно получить, например, карту глубины по картинке

Reinforcement learning что это. . Reinforcement learning что это фото. Reinforcement learning что это-. картинка Reinforcement learning что это. картинка

(пример из работы, где используется практически не измененная предобученная сеть Densenet-169)

Или определять позу человека. Применений много.

Reinforcement learning что это. idrsspge5oaq0dae1 li5pghf3s. Reinforcement learning что это фото. Reinforcement learning что это-idrsspge5oaq0dae1 li5pghf3s. картинка Reinforcement learning что это. картинка idrsspge5oaq0dae1 li5pghf3s

Как следствие, распознавание изображений потенциально можно использовать для создания сильного ИИ, так как оно действительно отражает модель нашего реального мира. От фотографии к видео один шаг, а видео — это и есть наша жизнь, так как около 99% информации мы получаем зрительно.

Но по фотографии совершенно непонятно, как мотивировать нейронную сеть думать и делать выводы. Ее можно обучить отвечать на вопросы вроде «сколько карандашей лежит на столе?» (этот класс задач называется Visual Question Answering, пример такого датасета: https://visualqa.org). Или давать текстовое описание тому, что происходит на фото. Это класс задач Image Captioning.

Reinforcement learning что это. mplz0y9uleukwz68u lyc35wlqk. Reinforcement learning что это фото. Reinforcement learning что это-mplz0y9uleukwz68u lyc35wlqk. картинка Reinforcement learning что это. картинка mplz0y9uleukwz68u lyc35wlqk

Но является ли это интеллектом? Развив этот подход, в недалеком будущем нейронные сети смогут отвечать по видео на вопросы вроде «На проводах сидело два воробья, один из них улетел, сколько осталось воробьев?». Это уже настоящая математика, в чуть более усложненных случаях недоступная животным и находящаяся на уровне человеческого школьного образования. Особенно, если кроме воробьев, там рядом будут сидеть синички, но их не нужно учитывать, так как вопрос был только про воробьев. Да, это определенно будет интеллект.

3. Обучение с подкреплением (Reinforcement Learning)

Идея очень проста: поощрять действия, ведущие к награде, и избегать ведущих к неудаче. Это универсальный способ обучения и, очевидно, он со всей определенностью может привести к созданию сильного ИИ. Поэтому к Reinforcement Learning такой большой интерес в последние годы.

Конечно, лучше всего сильный ИИ создавать комбинируя все три подхода. На картинках и с обучением с подкреплением можно получить ИИ уровня животных. А добавив к картинкам текстовые названия объектов (шутка, конечно же — заставив ИИ просматривать видео, где люди взаимодействуют и разговаривают, как при обучении младенца), и дообучив на текстовом массиве для получения знаний (аналог нашей школы и университета), в теории можно получить ИИ человеческого уровня. Способный разговаривать.

У обучения с подкреплением есть один большой плюс. В симуляторе можно создать упрощенную модель мира. Так, для фигурки человека достаточно всего 17 степеней свободы, вместо 700 в живом человеке (примерное число мышц). Поэтому в симуляторе можно решать задачу в очень маленькой размерности.

Забегая вперед, современные алгоритмы Reinforcement Learning не способны произвольно управлять моделью человека даже с 17 степенями свободы. То есть не могут решить задачу оптимизации, где на входе 44 числа и на выходе 17. Удается это сделать только в очень простых случаях, с тонкой ручной настройкой начальных условий и гиперпараметров. И даже в этом случае, например чтобы научить модель гуманоида с 17 степенями свободы бегать, причем начиная с положения стоя (что намного проще), нужно несколько суток расчетов на мощном GPU. А чуть более сложные случаи, например научиться вставать из произвольной позы, может вообще никогда не обучиться. Это провал.

Кроме того, все Reinforcement Learning алгоритмы работают с удручающе маленькими нейронными сетями, а с обучением больших не справляются. Крупные сверточные сети используются только чтобы снизить размерность картинки до нескольких features, которые и подаются на вход алгоритмам обучения с подкреплением. Тот же бегающий гуманоид управляется Feed Forward сетью с двумя-тремя слоями по 128 нейронов. Серьезно? И на основе этого мы пытаемся построить сильный ИИ?

Чтобы попытаться понять, почему так происходит и что не так с обучением с подкреплением, надо сначала ознакомиться с основными архитектурами в современном Reinforcement Learning.

Физическое устройство мозга и нервной системы настроено эволюцией под конкретный вид животного и его условия обитания. Так, у мухи в процессе эволюции развилась такая нервная система и такая работа нейромедиаторов в ганглиях (аналог мозга у насекомых), чтобы быстро уворачиваться от мухобойки. Ну хорошо, не от мухобойки, а от птиц, которые их ловили 400 миллионов лет (шутка, птицы сами появились 150 млн лет назад, скорее от лягушек 360 млн лет). А носорогу достаточно такой нервной системы и мозга, чтобы медленно повернуться в сторону цели и начать бежать. А там, как говорится, у носорога плохое зрение, но это уже не его проблемы.

Но помимо эволюции, у каждой конкретной особи, начиная с рождения и в течении всей жизни, работает именно обычный механизм обучения с подкреплением. В случае млекопитающих, да и насекомых тоже, эту работу выполняет дофаминовая система. Ее работа полна тайн и нюансов, но все сводится к тому, что в случае получения награды, дофаминовая система, через механизмы памяти, как-то закрепляет связи между нейронами, которые были активны непосредственно до этого. Так формируется ассоциативная память.

Которая, в силу своей ассоциативности, потом используется при принятии решений. Проще говоря, если текущая ситуация (текущие активные нейроны в этой ситуации) по ассоциативной памяти активируют нейроны памяти об удовольствии, то особь выбирает действия, которые она делала в похожей ситуации и которые запомнила. «Выбирает действия» — это плохое определение. Выбора нет. Просто активированные нейроны памяти об удовольствии, закрепленные дофаминовой системой для данной ситуации, автоматически активируют моторные нейроны, приводящие к сокращению мышц. Это если необходимо немедленное действие.

Искусственному обучению с подкреплением, как области знаний, необходимо решить обе эти задачи:

1. Подобрать архитектуру нейросети (что для нас уже сделала эволюция)

Хорошая новость в том, что высшие когнитивные функции, выполняющиеся в неокортексе у млекопитающих (и в полосатом теле у врановых), выполняются в примерно однородной структуре. Видимо, для этого не нужно какой-то жестко прописанной «архитектуры».

Разноплановость областей мозга, вероятно, объясняется чисто историческими причинами. Когда по мере эволюции новые части мозга нарастали поверх базовых, оставшихся от самых первых животных. По принципу работает — не трогай. С другой стороны, у разных людей одинаковые части мозга реагируют на одинаковые ситуации. Это может объясняться как ассоциативностью (features и «нейроны бабушки» естественным образом сформировались в этих местах в процессе обучения), так и физиологией. Что сигнальные пути, закодированные в генах, ведут именно к этим областям. Единого мнения тут нет, но можно почитать, например, эту недавнюю статью: «Biological and artificial intelligence».

2. Научиться обучать нейронные сети по принципам обучения с подкреплением

Именно этим, в основном, и занимается современный Reinforcement Learning. И какие успехи? Не очень.

Наивный подход

Казалось бы, обучать нейросеть с подкреплением очень просто: делаем случайные действия, и если получили награду, то считаем сделанные действия «эталонными». Ставим их на выход нейросети как стандартные labels и обучаем нейронную сеть методом обратного распространения ошибки, чтобы она выдавала именно такой выход. Ну, самое обычное обучение нейросети. А если действия привели к неудаче, то либо игнорируем этот случай, либо подавляем эти действия (ставим эталонными на выходе какие-нибудь другие, например любое другое случайное действие). В общем и целом, эта идея повторяет дофаминовую систему.

Но если вы попробуете так обучать любую нейронную сеть, неважно насколько сложной архитектуры, реккурентную, сверточную или обычную прямого распространения, то… Ничего не выйдет!

Считается, что полезный сигнал настолько мал, что теряется на фоне шума. Поэтому стандартным методом обратного распространения ошибки сеть не обучается. Награда случается очень редко, может один раз из сотен или даже тысяч шагов. А даже LSTM запоминает максимум 100-500 точек истории, и то лишь в очень простых задачах. А на более сложных если будет 10-20 точек истории, то уже хорошо.

Но корень проблемы именно в очень редких наградах (по крайней мере в задачах, представляющих практическую ценность). На данный момент мы не умеем обучать нейросети, которые запоминали бы единичные случаи. С чем мозг справляется с блеском. Можно что-то, случившееся всего один раз, запомнить на всю жизнь. И, кстати, большая часть обучения и работы интеллекта строится именно на таких случаях.

Это что-то вроде жуткого дисбаланса классов из области распознавания изображений. Способов бороться с этим просто нет. Лучшее, что пока смогли придумать — это просто подавать на вход сети наравне с новыми ситуациями, сохраненные в искусственном специальном буфере удачные ситуации из прошлого. То есть, постоянно обучать не только новым случаям, но и удачным старым. Естественно, нельзя бесконечно увеличивать такой буфер, да и непонятно что именно в нем хранить. Еще пытаются как-то на время фиксировать пути внутри нейросети, бывшие активными во время удачного случая, чтобы последующее обучение их не перезаписывало. Довольно близкая аналогия к происходящему в мозге, на мой взгляд, хотя особых успехов в этом направлении тоже пока не добились. Так как новые обученные задачи в своем расчете используют и результаты выхода нейронов из замороженных путей, то в итоге сигнал только по этим замороженным интерферирует с новыми, и старые задачи перестают работать. Есть еще один любопытный подход: обучать сеть новым примерам/задачам только в ортогональном направлении к предыдущим задачам (https://arxiv.org/abs/1810.01256). Это не перезаписывает предыдущий опыт, но резко ограничивает емкость сети.

Отдельным классом алгоритмов, призванных бороться с этой бедой (а заодно дарящих надежду достичь сильного ИИ), идут разработки в Meta-Learning. Это попытки обучить нейросеть сразу нескольким задачам. Не в смысле, что распознавать разные картинки в одной задаче, а именно разным задачам в разных доменах (каждый со своим распределением и ландшафтом решений). Скажем, распознавать картинки и одновременно ездить на велосипеде. Успехи пока тоже не очень, так как обычно все сводится к тому, чтобы заранее подготовить нейросеть с общими универсальными весами, а потом быстро, всего за несколько шагов градиентного спуска, доадаптировать их к конкретной задаче. Примеры алгоритмов метаобучения — MAML и Reptile.

В общем, только эта проблема (невозможность учиться на единичных удачных примерах) ставит крест на современном обучении с подкреплением. Вся мощь нейросетей перед этим печальным фактом пока бессильна.

Этот факт, что самый простой и очевидный способ не работает, заставил исследователей вернуться к классическому табличному Reinforcement Learning. Который как наука появился еще в седой древности, когда нейросети не были даже в проекте. Но теперь, вместо ручного подсчета значений в таблицах и в формулах, давайте в качестве целевых функций использовать такой мощный аппроксиматор, как нейронные сети! В этом вся суть современного Reinforcement Learning. И главное его отличие от обычного обучения нейросетей.

Q-learning и DQN

Reinforcement Learning (еще до нейросетей) зародился как довольно простая и оригинальная идея: давайте делать, опять же, случайные действия, а потом для каждой ячейки в таблице и каждого направления движения, посчитаем по специальной формуле (получившей название уравнение Беллмана, это слово вы будете встречать практически в каждой работе по обучению с подкреплением), насколько хороша эта ячейка и выбранное направление. Чем выше получится это число, тем с большей вероятностью этот путь ведет к победе.

Reinforcement learning что это. image loader. Reinforcement learning что это фото. Reinforcement learning что это-image loader. картинка Reinforcement learning что это. картинка image loader

В какой ячейке вы бы ни появились, двигайтесь по нарастанию зеленого цвета! (в сторону максимального числа по бокам текущей ячейки).

Это число получило название Q (от слова quality — качество выбора, очевидно), а метод — Q-learning. Заменив формулу расчета этого числа на нейронную сеть, а точнее обучая нейронную сеть по этой формуле (плюс еще пара трюков, связанных чисто с математикой обучения нейросетей), в Deepmind получили метод DQN. Это который в 2015 году победил в куче Atari игр и положил начало революции в Deep Reinforcement Learning.

К сожалению, этот метод по своей архитектуре работает только с дискретными discrete действиями. В DQN на вход нейросети подается текущий state (текущая ситуация), а на выходе нейросеть предсказывает число Q. А так как на выходе сети перечислены сразу все возможные действия (каждый со своим предсказанным Q), то получается что нейросеть в DQN реализует классическую функцию Q(s,a) из Q-learning. Выдает Q для state и action (поэтому обозначение Q(s,a) как функции от s и a). Мы просто ищем обычным argmax по массиву среди выходов сети ячейку с максимальным числом Q и делаем действие, которое соответствует индексу этой ячейки.

Причем можно всегда выбирать действие с максимальным Q, тогда такая политика будет называться детерменистской. А можно выбирать действие как случайное из доступных, но пропорционально их Q-значениям (т.е. действия с высоким Q будут выбираться чаще, чем с низким). Такая политика называется стохастическая. У стохастического выбора плюс в том, что автоматически реализуется поиск и исследование мира (Exploration), так как каждый раз выбираются разные действия, иногда не кажущиеся самыми оптимальными, но могущие в будущем привести к большой награде. И тогда мы обучимся и повысим этим действиям вероятность, чтобы теперь они чаще выбирались согласно их вероятности.

В дальнейшем было разработано много оригинальных и местами гениальных алгоритмов на основе DQN, позволивших, в том числе, работать с continuous действиями (за счет хитростей и введения дополнительных нейросетей): DDQN, DuDQN, BDQN, CDQN, NAF, Rainbow. Пожалуй, сюда можно также отнести Direct Future Prediction (DFP), который роднится с DQN архитектурой сети и дискретными действиями. Вместо предсказания числа Q для всех действий, DFP напрямую предсказывает сколько на следующем шаге будет здоровья или патронов, если выбрать это действие. Причем на один шаг вперед и на несколько шагов вперед. Нам остается лишь перебрать все выходы сети и найти максимальное значение интересующего нас параметра и выбрать соответствующее этому элементу массива действие, в зависимости от текущих приоритетов. Например, если мы ранены, то можем среди выходов сети искать действие, ведущее к максимальному увеличению здоровья.

Но что еще важнее, за последующее время были разработаны новые архитектуры специально для Reinforcement Learning.

Reinforcement learning что это. image loader. Reinforcement learning что это фото. Reinforcement learning что это-image loader. картинка Reinforcement learning что это. картинка image loader

Policy Gradient

Давайте на вход сети подавать текущий state, а на выходе сразу предсказывать действия (либо сами действия, либо распределение вероятностей для них в стохастической политике). Мы просто действуем, применяя actions, предсказанные нейросетью. А потом смотрим, какую награду R набрали за эпизод. Эта награда может быть либо выше начальной (когда выиграли в игре), либо ниже (проиграли в игре). Также можно награду сравнивать со некоей средней наградой. Выше она средней или ниже.

Собственно, динамику полученной награды R в результате действий, которые подсказала нейросеть, можно использовать для вычисления градиента по специальной формуле. И применить этот градиент к весам нейросети! И дальше использовать обычное обратное распространение ошибки. Просто вместо «эталонных» действий на выходе сети в качестве labels (мы ведь не знаем какие они должны быть), используем изменение награды для расчета градиента. По этому градиенту сеть обучится, чтобы предсказывать действия, которые ведут к увеличению награды R.

Это классический Policy Gradient. Но у него есть недостаток — надо ждать окончания эпизода, чтобы посчитать куммулятивную награду R, прежде чем изменять веса сети согласно ее изменению. А из преимуществ — гибкая система поощрений и наказаний, которая не только работает в обе стороны, но также зависит от величины награды. Большая награда сильнее поощряет действия, которые к ней привели.

Actor-critic, DDPG

А теперь представьте, что у нас есть две сети — одна предсказывает какие действия надо совершить, а вторая оценивает насколько эти действия хороши. То есть, выдает Q-число для этих действий, как в алгоритме DQN. На вход первой сети подается state, а она предсказывает action(s). Вторая сеть на вход тоже получает state, но еще и действия action, предсказанные первой сетью, а на выходе выдает число Q как функцию от них обоих: Q(s,a).

Собственно, это число Q(s,a), выданное второй сетью (ее называют critic, критик), точно также можно использовать для вычисления градиента, которым обновлять веса первой сети (которую называют актером, actor), как мы делали выше с наградой R. Ну а вторая сеть обновляется обычным путем, согласно реальному прохождению эпизода. Этот метод получил название actor-critic. Его плюс по сравнению с классическим Policy Gradient, что веса сети можно обновлять на каждом шаге, не дожидаясь окончания эпизода. Что ускоряет обучение.

В таком виде это сеть DDPG. Так как она предсказывает напрямую действия actions, то прекрасно работает с continuous действиями. DDPG является прямым continuous конкурентом DQN с его дискретными действиями.

Reinforcement learning что это. image loader. Reinforcement learning что это фото. Reinforcement learning что это-image loader. картинка Reinforcement learning что это. картинка image loader

Advantage Actor Critic (A3C/A2C)

Следующим шагом стало использование для обучения первой сети не просто предсказания критиком critic числа Q(s,a) — насколько хороши действия, предсказанные актером actor, как это было в DDPG. А насколько эти предсказанные действия оказались лучше или хуже, чем мы ожидали.

Это очень близко к тому, что происходит в биологическом мозге. Из экспериментов известно, что максимальный выброс дофамина происходит не во время самого получения удовольствия, а во время ожидания, что скоро получим удовольствие. Впрочем, если ожидания не оправдались, то наступают ужасные последствия, большие чем в обычном случае (в организме присутствует специальная система наказания, обратная системе вознаграждения).

Для этого для расчета градиентов стали использовать не число Q(s,a), а так называемое Advantage: A(s,a) = Q(s,a) — V(s). Число A(s,a) показывает не абсолютное качество Q(s,a) выбранных действий, а относительное преимущество — насколько после предпринятых действий станет лучше, чем текущая ситуация V(s). Если A(s,a) > 0, то градиент будет изменять веса нейросети, поощряя предсказанные сетью действия. Если A(s,a)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *