Sx ux2 uox2 2ax что за формула
Каталог файлов
КИНЕМАТИКА (ФОРМУЛЫ)
Закон сложения скоростей (для поступательного движения системы отсчета)
v1 = v12 + v2,
где v1 − скорость первого тела (например, относительно земли), v12 − скорость первого тела относительно второго тела (подвижной системы отсчета), v2 − скорость второго тела (относительно земли). Аналогичный вид имеют закон сложения перемещений
S1 = S12 + S2
и закон сложения ускорений
a1 = a12 + a2.
Эту формулу в виде
v12 = v1 − v2
называют формулой для относительной скорости двух тел.
Средняя скорость при неравномерном движении по прямой
Скорость и перемещение при равноускоренном движении по прямой
Свободное падение (vo = 0). Скорость и перемещение (ось y направлена вниз, ay = g)
Бросок вертикально вверх с начальной скоростью vo. Скорость и перемещение (ось y направлена вверх, voy = vo, ay = −g):
Бросок под углом к горизонту с начальной скоростью vo. Проекция скорости и перемещения (ось x направлена горизонтально, ось y − вертикально вверх):
Объем и масса (жидкости, газа), проходящие через сечение S струи за время Δt (уравнение расхода):
ΔV = SvΔt,
Δm = ρΔV = ρSvΔt,
где v − скорость струи, ρ − плотность (жидкости, газа).
Sx ux2 uox2 2ax что за формула
Покажем, как задачи с параметрами можно решать графически.
Найдём количество решений уравнения
Искомое количество решений совпадает с числом точек пересечения графиков функций
Методом интервалов нетрудно построить график функции
Проанализировав график, несложно выписать ответ.
Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.
Найдём количество решений системы уравнений
Рассмотрим пример использования этого правила в задаче.
имеет хотя бы одно решение.
В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.
Найдём все значения `a`, при каждом из которых уравнение
Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.
Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.
При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a
Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;
имеет ровно три решения.