ΡΠ°Π½Π³Π΅Π½Ρ ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΡ ΡΠ³Π»ΠΎΠ²
Π’Π°Π½Π³Π΅Π½Ρ
Π’Π°Π½Π³Π΅Π½Ρ (tg) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡΡ (tgΞ± = sinΞ± / cosΞ±). ΠΠΈΠ±ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° (Π΄Π°Π»ΡΠ½Π΅Π³ΠΎ/ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ) ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ΄ΠΎΠΌ Ρ ΡΠ³Π»ΠΎΠΌ).
Π ΡΡΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π² Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ°ΡΡΠΈΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΡΠ΅ΡΡ, Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ Π·Π΄Π΅ΡΡ Π½Π΅Ρ (ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ β ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°).
ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ BC, Π·Π½Π°Ρ, ΡΡΠΎ tan Ξ± = 0,4:
tan Ξ± = ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ / ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ = BC / AB = x / 15
x / 15 = 0,4 x = 15 * 0,4 x = 6
Π’Π°Π±Π»ΠΈΡΠ° ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² (Π³Π»Π°Π²Π½ΡΡ ΡΠ³Π»ΠΎΠ² ΠΎΡ 0Β° Π΄ΠΎ 360Β°)
Ξ± Π³ΡΠ°Π΄ΡΡΠΎΠ² | 0Β° | 30Β° | 45Β° | 60Β° | 90Β° | 180Β° | 270Β° | 360Β° |
Ξ± ΡΠ°Π΄ΠΈΠ°Π½ | 0 | Ο/6 | Ο/4 | Ο/3 | Ο/2 | Ο | 3Ο/2 | 2Ο |
tg Ξ± | 0 | β3/3 | 1 | β3 | β | 0 | β | 0 |
ctg Ξ± | β | β3 | 1 | β3/3 | 0 | β | 0 | β |
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠ½ΡΡ?
Π‘ΠΈΠ½ΡΡ ΡΠ³Π»Π° (sin) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° (ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΡΠ³Π»Π°) ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ (ΡΠ°ΠΌΠΎΠΉ Π΄Π»ΠΈΠ½Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°).
Π Π½Π°ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ sin Ξ± = BC/AC.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡ?
ΠΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° (cos) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° (Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ΄ΠΎΠΌ Ρ ΡΠ³Π»ΠΎΠΌ) ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ (ΡΠ°ΠΌΠΎΠΉ Π΄Π»ΠΈΠ½Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°). Π Π½Π°ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ cos Ξ± = AB/AC.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ?
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° (ctg) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° (ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ΄ΠΎΠΌ Ρ ΡΠ³Π»ΠΎΠΌ) ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (Π½Π°ΠΏΡΠΎΡΠΈΠ² ΡΠ³Π»Π°). Π Π½Π°ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ctg Ξ± = AB / BC. ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ β ΡΡΠΎ ΠΊΠ°ΠΊ «ΡΠ°Π½Π³Π΅Π½Ρ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ» (ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ), Ρ. Π΅. ctg Ξ± = AB / BC, Π° tg Ξ± = BC / AB (ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ΅ΠΊΠ°Π½Ρ?
Π‘Π΅ΠΊΠ°Π½Ρ (sec ΠΈΠ»ΠΈ sec x) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ (ΡΠ°ΠΌΠΎΠΉ Π΄Π»ΠΈΠ½Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°) ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ ΠΊΠ°ΡΠ΅ΡΡ (ΡΡΠ΄ΠΎΠΌ Ρ ΡΠ³Π»ΠΎΠΌ) ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅. ΠΡΡ ΡΠ΅ΠΊΠ°Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΈ ΠΊΠ°ΡΠ΅Ρ?
ΠΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° β ΡΡΠΎ ΡΠ° ΡΡΠΎΡΠΎΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π° (ΠΎΠ½Π° ΡΠ°ΠΌΠ°Ρ Π΄Π»ΠΈΠ½Π½Π°Ρ), Π² Π½Π°ΡΠ΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Π° AC. ΠΠ°ΡΠ΅ΡΡ β ΡΡΠΎ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΡΡΠ΄ΠΎΠΌ Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ, Π² Π½Π°ΡΠ΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ BC ΠΈ AB:
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ
9 ΠΊΠ»Π°ΡΡ, 10 ΠΊΠ»Π°ΡΡ, ΠΠΠ/ΠΠΠ
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ sin ΠΈ cos ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°
ΠΡ ΡΠΆΠ΅ Π½Π°Π²Π΅ΡΠ½ΡΠΊΠ° Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΡΠΉ β ΡΡΠΎ ΡΠ°Π²Π½ΡΠΉ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° β ΡΡΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ, ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π»ΡΠ±ΡΡ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π΄ΡΡΠ³Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ»ΡΡ ΠΊ ΡΠ΅ΡΠ΄ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ β ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ ΠΈ ΠΏΠΎΠ»ΡΠ±ΠΈΡΠ΅ Π΅Π³ΠΎ, ΡΡΠΎΠ±Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ ΡΠ»ΠΎΠΆΠΈΠ»ΠΈΡΡ ΡΠ°ΠΌΡΠΌ Π½Π°ΠΈΠ»ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° Π²ΡΡΠ΅ΠΊΠ°ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΎ β ΠΊΠ»ΡΡΠ΅Π²ΠΎΠ΅.
Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ tg 2 Ξ± + 1 = 1/cos 2 Ξ± ΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ 1 + Ρtg 2 Ξ± + 1 = 1/sin 2 Ξ± Π²ΡΠ²ΠΎΠ΄ΡΡ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°, ΡΠ°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π½Π° sin 2 Ξ± ΠΈ cos 2 Ξ±.
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠΎΡΡΠΎΠΌΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Ρ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ. ΠΠΎ ΠΊΠ°ΠΊΠ°Ρ ΠΆΠ΅ Β«ΠΌΠ΅ΡΡΠΈΡΒ» ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΠΎΠΉΡΠΈΡΡ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ². ΠΠΈΠ΄ΠΈΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ β Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°ΠΉΡΠ΅, Π½Π΅ ΡΠ°Π·Π΄ΡΠΌΡΠ²Π°Ρ.
sin 2 Ξ± + cos 2 Ξ± = 1
Π‘ΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
Π§ΡΠΎΠ±Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ, ΠΎΠ±ΡΠ°ΡΠΈΠΌΡΡ ΠΊ ΡΠ΅ΠΌΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΠ΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ β ΡΡΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π Π°Π΄ΠΈΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π»ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ OA1B.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΡΠ²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π°. ΠΠ½Π°Ρ ΠΎΠ΄Π½ΠΎ, Π²Ρ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ Π΄ΡΡΠ³ΠΎΠ΅. ΠΡΠΆΠ½ΠΎ Π»ΠΈΡΡ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΎΡΡΡ ΠΈ ΠΌΠΈΠ½ΡΡ, ΠΈ ΠΏΠ»ΡΡ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ Π½Π΅ Π΄Π°Π΅Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π±ΡΠ» ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΡΠΈΠ½ΡΡ/ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π°.
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² Π·Π°Π΄Π°ΡΠΊΠ°Ρ Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΡΠΆΠ΅ Π΅ΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ. ΠΠ±ΡΡΠ½ΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ β ΡΠΊΠ°Π·Π°Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΡΠ΅ΡΠ²Π΅ΡΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π±Π΅Π· ΡΡΡΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΊΠ°ΠΊΠΎΠΉ Π·Π½Π°ΠΊ Π½Π°ΠΌ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ΅ΡΠ΅Π· ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ
ΠΠ· Π²ΡΠ΅Π³ΠΎ ΡΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠ°ΡΠΈΠ²ΡΡ , Π½ΠΎ Π½Π΅ ΡΠΈΠ»ΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΡΡ ΡΠ»ΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΡ Π΄ΡΡΠ³ΠΎΠ³ΠΎ. Π’Π°ΠΊΠ°Ρ ΡΠ²ΡΠ·Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°ΡΡ Π½ΡΠΆΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ:
ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π·Π°Π΄Π°ΡΡΡΡ sin ΠΈ cos ΡΠ³Π»ΠΎΠ².
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡΡ. Π ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΊ ΡΠΈΠ½ΡΡΡ.
ΠΡΠ΄Π΅Π»ΡΠ½ΠΎ ΡΡΠΎΠΈΡ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π²Π΅ΡΠ½Ρ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ² Ξ±, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π²ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½.
ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ³Π»Π° Ξ±, Π½Π΅ ΡΠ°Π²Π½ΠΎΠ³ΠΎ Ο * z, Π³Π΄Π΅ z β ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ
Π£ΠΆ Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΅ΡΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π΅Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°ΠΌΠΈ, Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ΅ Π±ΠΎΠ»Π΅Π΅ Π½Π°Π³Π»ΡΠ΄Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π’Π°ΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΈ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΏΡΠΈ Π»ΡΠ±ΡΡ ΡΠ³Π»Π°Ρ Ξ±, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΡΠ°Π²Π½ΡΡΡΡΡ Ο/2 * z, Π³Π΄Π΅ z β ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. Π ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ Π±ΡΠ΄ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ.
ΠΠ°ΠΊ ΠΈ Π»ΡΠ±ΠΎΠ΅ Π΄ΡΡΠ³ΠΎΠ΅, Π΄Π°Π½Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Ρ. ΠΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ.
tg Ξ± * ctg Ξ± = 1.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ ΡΠΌΡΡΠ» β ΡΡΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΡΠ»ΠΈ ΡΠΈΡΠ»Π° a ΠΈ b Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ β ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ a β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»Ρ b, Π° ΡΠΈΡΠ»ΠΎ b β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»Ρ a. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»Ρ a ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠΈΡΠ»ΠΎ b, Π° ΡΠΈΡΠ»Ρ b ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠΈΡΠ»ΠΎ a. ΠΠΎΡΠΎΡΠ΅, ΠΈ ΡΠ°ΠΊ, ΠΈ ΡΠ΄Π°ΠΊ.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΡΠΈΠ½ΡΡ
ΠΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° Π²ΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° ΡΠ²ΡΠ·Π°Π½ Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ ΡΠ³Π»Π°, Π° ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β Ρ ΡΠΈΠ½ΡΡΠΎΠΌ.
ΠΡΠ° ΡΠ²ΡΠ·Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½Π°, Π΅ΡΠ»ΠΈ Π²Π·Π³Π»ΡΠ½ΡΡΡ Π½Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°:
Π‘ΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠ°Π²Π½Π° ΡΠΈΡΠ»Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π‘ΡΠΌΠΌΠ° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΡΠ°Π²Π½Π° ΡΠΈΡΠ»Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΡΠΈΠ½ΡΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΡΠ²Π΅ΡΡΠΈ ΠΎΠ±Π° ΡΡΠΈΡ
ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°:
sin 2 Ξ± + cos 2 Ξ± = 1.
Π₯ΠΎΡΠΎΡΠΎ Π±Ρ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ² Π½Π°ΠΈΠ·ΡΡΡΡ. Π§ΡΠΎΠ±Ρ ΡΡΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ΅Π±Π΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
sin 2 Ξ± + cos 2 Ξ± = 1
tg 2 Ξ± + 1 =
1 + ctg 2 Ξ± =
Π§ΡΠΎΠ±Ρ ΡΡΠ°ΡΠΈΡΡ Π΅ΡΠ΅ ΠΌΠ΅Π½ΡΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ .
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
Π Π°Π·Π±Π΅ΡΠ΅ΠΌ ΠΏΠ°ΡΡ Π·Π°Π΄Π°ΡΠ΅ΠΊ, Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°. Π Π°ΡΡΠΌΠΎΡΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠΉΡΠ΅ΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ.
ΠΠ°Π΄Π°ΡΠΊΠ° 1. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ cos Ξ±, tg Ξ±, ctg Ξ± ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ sin Ξ± = 12/13.
ΠΠ°Π΄Π°ΡΠΊΠ° 2. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ cos Ξ±,
Π΅ΡΠ»ΠΈ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ sin Ξ±:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, Π·Π°Π΄Π°ΡΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΡΡΠΎ, Π½ΡΠΆΠ½ΠΎ Π»ΠΈΡΡ Π²Π΅ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ².
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)
ΠΠ°ΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΌΠ°ΡΠ°ΡΠΎΠ½
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ: ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π±Π°Π·ΠΎΠ²ΡΠΌ ΠΏΠΎΠ½ΡΡΠΈΡΠΌ ΠΈ Π΄Π΅ΡΠΈΠ½ΠΈΡΠΈΡΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π½Π΅ΠΉ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ: ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°. Π Π°Π·ΡΡΡΠ½Π΅Π½ ΠΈ ΠΏΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ ΠΈΡ ΡΠΌΡΡΠ» Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
ΠΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ», Π²ΡΡΠ°ΠΆΠ°Π»ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ°Π½Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Ρ Π΄Π»Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°!
Π ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ABC Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ Π‘ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Π ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΠ° BC ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ AB.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ Π΄Π»ΠΈΠ½Π°ΠΌ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΠΈΠ½ΡΡ (sin) ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π½Π΅ Π³ΠΎΠ²ΠΎΡΡΡ «ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Ξ± «. Π‘Π»ΠΎΠ²Π° «ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°» ΠΏΡΠΎΡΡΠΎ ΠΎΠΏΡΡΠΊΠ°ΡΡ, ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Ρ, ΡΡΠΎ ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΈ ΡΠ°ΠΊ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΎ ΡΠ΅ΠΌ ΠΈΠ΄Π΅Ρ ΡΠ΅ΡΡ.
Π§ΠΈΡΠ»Π°
ΠΠ°ΠΊ Π±ΡΡΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°, Π° Π½Π΅ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°?
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠΈΡΠ»Π°
Π‘ΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ, ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΡΠΈΡΠ»Π° t Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΠΈΠ½ΡΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡΡ, ΡΠ°Π½Π³Π΅Π½ΡΡ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΡ Π² t ΡΠ°Π΄ΠΈΠ°Π½.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΈΠ½ΡΡ ΡΠΈΡΠ»Π° 10 Ο ΡΠ°Π²Π΅Π½ ΡΠΈΠ½ΡΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 10 Ο ΡΠ°Π΄.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅Π³ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅.
ΠΡΠ±ΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ t ΡΡΠ°Π²ΠΈΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΠΎΡΠΊΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ.
Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ²ΡΠ·Ρ ΡΠΈΡΠ»Π° ΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π°, ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.
ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΠΈ Π½Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, Π΄Π°Π½Π½ΠΎΠΌΡ Π² Π½Π°ΡΠ°Π»Π΅ ΡΡΠΎ ΠΏΡΠ½ΠΊΡΠ°. Π’ΠΎΡΠΊΠ° Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΡΠΈΡΠ»Ρ t, ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΡΠΎΡΠΊΠΎΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π½Π° ΡΠ³ΠΎΠ» t ΡΠ°Π΄ΠΈΠ°Π½.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, Ρ ΠΊΠ°ΠΊΠΈΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ³Π»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΠΈΠ»ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ) ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ sin, cos, tg ΠΈ ctg ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π΄Π°Π½Π½ΡΠΌ Π² ΡΠ°ΠΌΠΎΠΌ Π½Π°ΡΠ°Π»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌ ΠΈ ΡΠ³Π»Ρ Π°Π»ΡΡΠ°, Π»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ². Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌΠΈ, Π΄Π°Π½Π½ΡΠΌΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΡΠΎ.
Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Ξ± ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
sin Ξ± = A 1 H O A 1 = y 1 = y
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Π΄Π»Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ. ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ (ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ).
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ³Π»Π°, ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΎΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ, Ρ.Π΅. ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ³Π»Π°.
ΠΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ°Π½Π³Π΅Π½ΡΠ° (ADl, AD2 ΠΈ Ρ.Π΄.) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠ½Π΅Ρ Π ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ°, ΠΎΡ ΡΠΎΡΠΊΠΈ ΠΊΠ°ΡΠ°Π½ΠΈΡ Π΄ΠΎ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° (OMl, ΠΠ2 ΠΈ. Ρ.Π΄.).
ΠΠΈΠ½ΠΈΠ΅ΠΉ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° (BEl, ΠΠ2 ΠΈ Ρ.Π΄.) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠ½Π΅Ρ Π Π²ΡΠΎΡΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ°, ΠΎΡ ΡΠΎΡΠΊΠΈ ΠΊΠ°ΡΠ°Π½ΠΈΡ Π Π΄ΠΎ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° (OM1, OM2 ΠΈ Ρ.Π΄.).
Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° (tgΡ ) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠ°, Π²Π·ΡΡΠΎΠ³ΠΎ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ Π·Π½Π°ΠΊΠΎΠΌ, ΠΊ ΡΠ°Π΄ΠΈΡΡΡ.
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° (ΡtgΡ ) β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°, Π²Π·ΡΡΠΎΠ³ΠΎ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ Π·Π½Π°ΠΊΠΎΠΌ, ΠΊ ΡΠ°Π΄ΠΈΡΡΡ.
ΠΠ½Π°ΠΊΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ΅ΡΠ²Π΅ΡΡΠ΅ΠΉ ΡΠΊΠ°Π·Π°Π½Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅:
Π‘Π΅ΠΊΠ°Π½Ρ (secx) ΠΈ ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ (cosecx) ΠΏΡΠΎΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΈ ΡΠΈΠ½ΡΡΠ°.
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ Π²ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ, Ρ. Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΈΡ Π²ΡΡΠ°ΠΆΠ°ΡΡ ΠΎΠ΄Π½Ρ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΡ Π΄ΡΡΠ³ΡΡ.
Π’Π°Π½Π³Π΅Π½Ρ
Π’Π°Π½Π³Π΅Π½Ρ β ΠΎΠ΄Π½Π° ΠΈΠ· ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°ΠΊ ΠΈ Π΄Π»Ρ Π²ΡΠ΅Ρ Π΄ΡΡΠ³ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΈΠ»ΠΈ ΡΠΈΡΠ»Π° (Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ.
ΠΡΠ³ΡΠΌΠ΅Π½Ρ ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ°
ΠΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ:
— ΠΊΠ°ΠΊ ΡΠΈΡΠ»ΠΎ ΠΈΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΠΈ: \(1,3\), \(\frac<Ο><4>\), \(Ο\), \(-\frac<Ο><3>\) ΠΈ Ρ.ΠΏ.
— ΡΠ°ΠΊ ΠΈ ΡΠ³ΠΎΠ» Π² Π³ΡΠ°Π΄ΡΡΠ°Ρ
: \(45^Β°\), \(360^Β°\),\(-800^Β°\), \(1^Β° \) ΠΈ Ρ.ΠΏ.
Π’Π°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°
1) ΠΡΡΡΡ Π΄Π°Π½ ΡΠ³ΠΎΠ» ΠΈ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π³Π΅Π½Ρ ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
2) ΠΠΎΡΡΡΠΎΠΈΠΌ Π½Π° ΡΡΠΎΠΌ ΡΠ³Π»Π΅ Π»ΡΠ±ΠΎΠΉ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ.
3) ΠΠ·ΠΌΠ΅ΡΠΈΠ², Π½ΡΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ, ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠ°Π½Π³Π΅Π½Ρ.
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π° ΠΈΠ»ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ³Π»Π°
ΠΠ»Ρ ΡΠΈΡΠ΅Π», Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΡΡΠΏΡΡ , ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΡΡ ΡΠ³Π»ΠΎΠ² ΠΈ ΡΠ³Π»ΠΎΠ² Π±ΠΎΠ»ΡΡΠΈΡ \(360Β°\) ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ΅ΡΠ΅Π· ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅:
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ \(tg\:0\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅: Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠ°Π½Π³Π΅Π½Ρ Π½ΡΠ»Ρ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ½Π°ΡΠ°Π»Π° ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ \(0\). Π ΡΠΎ, ΠΈ Π΄ΡΡΠ³ΠΎΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π° :
Π’ΠΎΡΠΊΠ° \(0\) Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ \(1\) Π½Π° ΠΎΡΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ², Π·Π½Π°ΡΠΈΡ \(cos\:0=1\). ΠΡΠ»ΠΈ ΠΈΠ· ΡΠΎΡΠΊΠΈ \(0\) Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ ΠΊ ΠΎΡΠΈ ΡΠΈΠ½ΡΡΠΎΠ², ΡΠΎ ΠΌΡ ΠΏΠΎΠΏΠ°Π΄Π΅ΠΌ Π² ΡΠΎΡΠΊΡ \(0\), Π·Π½Π°ΡΠΈΡ \(sin\:β‘0=0\). ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ: \(tg\:0=\) \(\frac
ΠΡΡΠΌΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΎΡΡΡΠ΅ΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΡΠΈΠ½ΡΡΠΎΠ²) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΡΡ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ². ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² ΠΈ ΠΎΡΠΈ ΡΠΈΠ½ΡΡΠΎΠ² ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ.
ΠΡΡ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² β ΡΡΠΎ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΊΠΎΠΏΠΈΡ ΠΎΡΠΈ ΡΠΈΠ½ΡΡΠΎΠ², ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ. ΠΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π½Π° Π½Π΅ΠΉ ΡΠ°ΡΡΡΠ°Π²Π»ΡΡΡΡΡ ΡΠ°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ Π½Π° ΠΎΡΠΈ ΡΠΈΠ½ΡΡΠΎΠ².
Π§ΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π½Π³Π΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Π½ΡΠΆΠ½ΠΎ:
1) ΠΡΠΌΠ΅ΡΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΎΡΠΊΡ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
2) ΠΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΡΠ΅ΡΠ΅Π· ΡΡΡ ΡΠΎΡΠΊΡ ΠΈ Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΠΎΠ΄Π»ΠΈΡΡ Π΅Ρ Π΄ΠΎ ΠΎΡΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ².
3) ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΡΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ².
2) ΠΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΈ Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΏΡΡΠΌΡΡ.
3) Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄ΠΎΠ»Π³ΠΎ ΠΈΡΠΊΠ°ΡΡ Π½Π΅ ΠΏΡΠΈΠ΄Π΅ΡΡΡ β ΠΎΠ½Π° ΡΠ°Π²Π½ΡΠ΅ΡΡΡ \(1\).
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ \(tg\: 45Β°\) ΠΈ \(tg\: (-240Β°)\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ»Ρ ΡΠ³Π»Π° \(45Β°\) (\(β KOA\)) ΡΠ°Π½Π³Π΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \(1\), ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² ΡΠ°ΠΊΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΡΡΠΎΡΠΎΠ½Π° ΡΠ³Π»Π°, ΠΏΡΠΎΡ
ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠΎΡΠΊΡ \(A\), ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ ΡΠ°Π½Π³Π΅ΡΠΎΠ². Π Π΄Π»Ρ ΡΠ³Π»Π° \(-240Β°\) (\(β KOB\)) ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ°Π²Π΅Π½ \(-\sqrt<3>\) (ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ \(-1,73\)).
Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° Π½Π΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΎ ΠΈ Π»Π΅ΠΆΠΈΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ \(-β\) Π΄ΠΎ \(+β\), ΡΠΎ Π΅ΡΡΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π»ΡΠ±ΡΠΌ.
Π’Π°ΠΊ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ Π»ΡΠ±ΡΡ ΠΈΠ· ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Ρ ΠΎΡΡ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠ², Ρ.ΠΊ. Π±ΡΠ΄Π΅Ρ ΠΈΠ΄ΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π΅ΠΉ. ΠΠΎΡΡΠΎΠΌΡ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΠ Π‘Π£Π©ΠΠ‘Π’ΠΠ£ΠΠ’ (Π΄Π»Ρ Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ°Π½Π³Π΅Π½Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π°ΠΉΠ΄Π΅Π½).
ΠΠ½Π°ΠΊΠΈ ΠΏΠΎ ΡΠ΅ΡΠ²Π΅ΡΡΡΠΌ
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½Π°Π½Π΅ΡΠ΅Π½Ρ Π΄Π²Π΅ Π·Π΅Π»Π΅Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π² I ΠΈ III ΡΠ΅ΡΠ²Π΅ΡΡΡΡ
. ΠΠ»Ρ Π½ΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ (Π·Π΅Π»Π΅Π½ΡΠ΅ ΠΏΡΠ½ΠΊΡΠΈΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅ ΠΏΡΠΈΡ
ΠΎΠ΄ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ°ΡΡΡ ΠΎΡΠΈ), Π·Π½Π°ΡΠΈΡ ΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΈΠ· I ΠΈ III ΡΠ΅ΡΠ²Π΅ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ (Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ).
Π‘ Π΄Π²ΡΠΌΡ ΡΠΈΠΎΠ»Π΅ΡΠΎΠ²ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ Π² II ΠΈ IV ΡΠ΅ΡΠ²Π΅ΡΡΡΡ
β Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, Π½ΠΎ Ρ ΠΌΠΈΠ½ΡΡΠΎΠΌ.