теорема косинусов для каких треугольников применяется
Теорема косинусов и синусов
Формулировка и доказательство теоремы косинусов
Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Формула Теоремы Пифагора:
a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.
К полученному выражению прибавим и отнимем квадрат второго катета:
Но так как b = c * cos α, то
Эту формулу мы получили для катетов в прямоугольном треугольнике, но аналогичная связь между стороной а и косинусом противолежащего угла справедлива и для произвольного треугольника.
Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Формула теоремы косинусов:
В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:
В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).
cos 2 α + sin 2 α = 1 — основное тригонометрическое тождество.
Что и требовалось доказать.
Следствие из теоремы косинусов: теорему косинусов также можно использовать для определения косинуса угла треугольника:
Сформулируем еще одно доказательство теоремы косинусов.
Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
Приравниваем правые части уравнений:
Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определим стороны b и c:
Формулировка теоремы для каждой из сторон треугольника
Теорема косинусов справедлива для всех сторон треугольника, то есть:
Таким образом, теорема косинусов обобщает теорему Пифагора. Закон косинуса может быть использован для любого вида треугольника.
Описание формулы косинуса угла из теоремы косинусов
Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:
Определение угла с помощью косинуса
А теперь обратим внимание на углы.
Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).
Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.
Рассмотрение пределов изменения cos α и sin α
Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.
Примеры решения задач
При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.
Пример 1. Дан треугольник АВС. Найти длину СМ.
∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.
Теорема косинусов (ЕГЭ 2022)
Что же такое теорема косинусов?
Представь себе, это такая… теорема Пифагора для произвольного треугольника. Она однажды тебя спасёт!
Дальше смотри рисунки и ты все поймешь. Один рисунок лучше тысячи слов 🙂
Разберёшься в ней – будь уверен, что любая задача с треугольником окажется тебе под силу!
Теорема косинусов — коротко о главном
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Почему теорема косинусов это… теорема Пифагора
И причем тут теорема Пифагора? Сейчас поясню.
Согласно теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов.
А что будет, если угол \( \displaystyle \angle C\), скажем, острый?
Вроде ясно, что величина \( \displaystyle <
А если угол \( \displaystyle \angle C\) – тупой?
Ну, тогда величина \( \displaystyle <
Но, опять же, на сколько? И как это связано с величиной \( \displaystyle \angle C\)?
Обрати внимание на вот эту добавку к теорему Пифагора: \( \displaystyle «-2ab\cos \gamma »\).
Вот она и «адаптирует» теорему Пифагора под острые и тупые углы треугольника. Сейчас мы докажем теорему косинусов и ты увидишь в теореме косинусов теорему Пифагора своими глазами.
Доказательство теоремы косинусов
Итак, для всякого (и остроугольного, и тупоугольного и даже прямоугольного!) треугольника верна теорема косинусов.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Рассмотрим три случая:
И убедимся, что для всех трех случаев теорема косинусов работает!
Угол С острый
\( \displaystyle \angle C
Он прямоугольный, можно пользоваться теоремой Пифагора:
\( \displaystyle AH\) можно выразить из треугольника (прямоугольного!) \( \displaystyle AHC\).
\( \displaystyle AH=b\sin \gamma \)
А вот \( \displaystyle BH=a-CH=a-b\cos \gamma \) (снова из \( \displaystyle \Delta AHC\) ).
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Угол С тупой
Начинаем точно также: опускаем высоту из точки \( \displaystyle A\).
А теперь, внимание, отличие!
\( \displaystyle BH=a+b\cos \left( <<180>^<\circ >>-\gamma \right)\).
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Угол С прямой
Но тогда \( \displaystyle \cos \gamma =0\) и теорема косинусов просто превращается в теорему Пифагора:
В каких же задачах бывает полезна теорема косинусов?
Ну, например, если у тебя даны две стороны треугольника и угол между ними, то ты прямо сразу можешь найти третью сторону.
Или, если тебе даны все три стороны, то ты тут же найдешь косинус любого угла по формуле:
И даже, если тебе даны две стороны и угол НЕ между ними, то третью сторону тоже можно найти, решая квадратное уравнение. Правда, в этом случае получается иногда два ответа и нужно соображать, какой же из них выбрать, или оставить оба.
Попробуй применять и не бояться – теорема косинусов почти также легка в обращении, как и теорема Пифагора.
И приходи к нам на бесплатные вебинары и занятия ( о них ниже).
Бонус: Вебинар на решение задач по теореме косинусов и синусов
Теорема косинусов (и синусов) — универсальный инструмент при решении треугольников — это теоремы косинусов и синусов.
А как мы уже знаем, почти любая задача в планиметрии сводится именно к треугольникам.
Этот вебинар из нашего курса подготовки к ЕГЭ по математике (о нем ниже). Вы выучите сами теоремы и научитесь применять их при решении задач первой части.
Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
К ЕГЭ можно подготовиться абсолютно бесплатно. У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете.
Если у вас с этим сложности, приходите к нам.
И если вам нужен действительно высокий балл, приходите на наши курсы:
Мы качественно готовим к ЕГЭ даже тех, у кого «нет способностей».
Расскажи про свой опыт!
Раз ты решил изучить эту статью, тебе либо понадобилась эта теорема, либо ты просто хочешь лучше разбираться в геометрии и тригонометрии! И это прекрасно!
Это очень полезная теорема.
Расскажи нам ниже в комментариях, помогла ли тебе эта статья. И есть ли у тебя вопросы или предложения.
Добавить комментарий Отменить ответ
Один комментарий
Некоторые комментарии прошлых лет к этой статье:
Ntpy_dame
31 октября 2019
Приятно оформленный сайт и хорошо изложенный материал, спасибо за ваш труд
Беслан
20 ноября 2019
Спасибо! Очень доступно
Лариса
23 января 2020
Спасибо! Более понятного объяснения не видела!
Теорема косинусов
Чтобы найти строну или угол треугольника применяют Теорему Косинусов.
Эта теорема обобщает теорему Пифагора. Доказать Теорему
Косинусов достаточно просто через треугольник, который
разделяют высотой на два прямоугольных треугольника.
Мы рассмотрим доказательство, формулировку,
следствия из Теоремы Косинусов.
Наряду с одной из известных теорем геометрии — теоремой Пифагора,
существует теорема косинусов. Теорема косинусов похожа по теорему
Пифагора, но отличается. Теорему косинусов, можно применить к абсолютно
любым треугольникам. А теорема Пифагора применяется исключительно
для прямоугольных треугольников.
Теорема косинусов — это теорема геометрии, обобщающая
теорему Пифагора, применяющаяся при нахождении углов
и сторон в любых треугольниках.
Формулировка теоремы косинусов
Формулировка у теоремы косинусов такая: в треугольнике квадрат любой из сторон
равен сумме квадратов двух других сторон минус удвоенное
произведение этих сторон на косинус угла между ними. Запишем эту
формулировку более кратко, используя рисунок 1, на котором изображен
произвольный треугольник ABC: \( BC^2 = AB^2 + AC^2 — 2 * (AB * AC) * cos ∠A \) .
Или, же еще более кратко: \( a^2 = b^2 + c^2 — 2bc * cos ∠A \) .
Доказательство теоремы косинусов
Для доказательства теоремы косинусов воспользуемся
рисунком 2, на котором изображен треугольник ABC.
Докажем, что \( BC^2 = AB^2 + AC^2 — 2 * (AB * AC) * cos ∠A: \)
Следствия из теоремы косинусов
Значение теоремы косинусов
Где применяется теорема косинусов?
Теорема косинусов применяется в тригонометрии, в частности
при нахождение сторон и углов в любых треугольниках. Например, зная
формулировку теоремы косинусов, косинус одно из угла треугольника,
и две стороны можно найти неизвестную сторону треугольника.
Виды теорем косинусов.
В зависимости от свойств треугольника, длины его сторон, градусной меры
его углов — теорема косинусов немного видоизменяется. Например, в
прямоугольных треугольниках теорема косинусов преобразуется в теорему Пифагора.