Tgx 5 чему равен cos 2x

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Немного теории.

Тригонометрические уравнения

Уравнение cos(х) = а

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a

Уравнение sin(х) = а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Уравнение вида a sin(x) + b cos(x) = c

Используя формулы \( \sin(x) = 2\sin\frac <2>\cos\frac<2>, \; \cos(x) = \cos^2 \frac <2>-\sin^2 \frac <2>\) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac <2>+ \cos^2 \frac <2>\right) \) получаем

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Источник

Основное тригонометрическое тождество

Tgx 5 чему равен cos 2x. 5fd3c07a3697b658124522. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3c07a3697b658124522. картинка Tgx 5 чему равен cos 2x. картинка 5fd3c07a3697b658124522

9 класс, 10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Связь между sin и cos одного угла

Вы уже наверняка знаете, что тождественный — это равный.

Основные тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Это значит, что любую из этих функций можно найти, если известна другая функция.

Ключ к сердцу тригонометрии — основное тригонометрическое тождество. Запомните и полюбите его, чтобы отношения с тригонометрией сложились самым наилучшим образом:

sin 2 α + cos 2 α = 1

Из основного тождества вытекают равенства тангенса и котангенса, поэтому оно — ключевое.

Равенство tg 2 α + 1 = 1/cos 2 α и равенство 1 + сtg 2 α + 1 = 1/sin 2 α выводят из основного тождества, разделив обе части на sin 2 α и cos 2 α.

В результате деления получаем:

Tgx 5 чему равен cos 2x. 5fd3c10228aa1070145453. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3c10228aa1070145453. картинка Tgx 5 чему равен cos 2x. картинка 5fd3c10228aa1070145453

Поэтому основному тригонометрическому тождеству уделяется максимум внимания. Но какая же «метрия» может обойтись без доказательств. Видите тождество — доказывайте, не раздумывая.

sin 2 α + cos 2 α = 1

Сумма квадратов синуса и косинуса одного угла тождественно равна единице.

Чтобы доказать тождество, обратимся к теме единичной окружности.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат. Радиус единичной окружности равен единице.

Tgx 5 чему равен cos 2x. 5fd3c1243222c757765475. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3c1243222c757765475. картинка Tgx 5 чему равен cos 2x. картинка 5fd3c1243222c757765475

Докажем тождество sin 2 α + cos 2 α = 1

Образовался прямоугольный треугольник OA1B.

Основное тригонометрическое тождество связывает синус угла и косинус угла. Зная одно, вы легко можете найти другое. Нужно лишь извлечь квадратный корень по формулам:

Как видите, перед корнем может стоять и минус, и плюс. Основное тригонометрическое тождество не дает понять, положительным или отрицательным был исходный синус/косинус угла.

Как правило, в задачках с подобными формулами уже есть условия, которые помогают определиться со знаком. Обычно такое условие — указание на координатную четверть. Таким образом без труда можно определить, какой знак нам требуется.

Тангенс и котангенс через синус и косинус

Из всего этого множества красивых, но не сильно понятных слов, можно сделать вывод о зависимости одного от другого. Такая связь помогает отдельно преобразовывать нужные величины.

Исходя из определений:

Это позволяет сделать вывод, что тригонометрические тождества

Tgx 5 чему равен cos 2x. 5fd3dab1c4d54747666731. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dab1c4d54747666731. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dab1c4d54747666731
Tgx 5 чему равен cos 2x. 5fd3dacf11ccf821343564. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dacf11ccf821343564. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dacf11ccf821343564

задаются sin и cos углов.

Отсюда следует, что тангенс угла — это отношение синуса угла к косинусу. А котангенс угла — это отношение косинуса к синусу.

Отдельно стоит обратить внимание на то, что тригонометрические тождества

Tgx 5 чему равен cos 2x. 5fd3dab1c4d54747666731. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dab1c4d54747666731. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dab1c4d54747666731
Tgx 5 чему равен cos 2x. 5fd3dacf11ccf821343564. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dacf11ccf821343564. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dacf11ccf821343564

верны для всех углов α, значения которых вписываются в диапазон.

Tgx 5 чему равен cos 2x. 5fd3dacf11ccf821343564. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dacf11ccf821343564. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dacf11ccf821343564

применимо для любого угла α, не равного π * z, где z — это любое целое число.

Связь между тангенсом и котангенсом

Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.

Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.

Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.

tg α * ctg α = 1.

Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.

Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.

Тангенс и косинус, котангенс и синус

Все тождества выше позволяют сделать вывод, что тангенс угла связан с косинусом угла, а котангенс угла — с синусом.

Эта связь становится очевидна, если взглянуть на тождества:

Сумма квадрата тангенса угла и единицы равна числу, обратному квадрату косинуса этого угла.

Сумма единицы и квадрата котангенса угла равна числу, обратному квадрату синуса этого угла.

Вывести оба этих тождества можно из основного тригонометрического тождества:
sin 2 α + cos 2 α = 1.

Хорошо бы выучить все формулы и запомнить формулировки тождеств наизусть. Чтобы это сделать, сохраняйте себе табличку с основными формулами.

Основные тригонометрические тождества

sin 2 α + cos 2 α = 1

Tgx 5 чему равен cos 2x. 5fd3dab1c4d54747666731. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dab1c4d54747666731. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dab1c4d54747666731

Tgx 5 чему равен cos 2x. 5fd3dacf11ccf821343564. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dacf11ccf821343564. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dacf11ccf821343564

tg 2 α + 1 = Tgx 5 чему равен cos 2x. 5fd3dccd32ee0686408539. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dccd32ee0686408539. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dccd32ee0686408539

1 + ctg 2 α = Tgx 5 чему равен cos 2x. 5fd3dd1f4f1e7554895377. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3dd1f4f1e7554895377. картинка Tgx 5 чему равен cos 2x. картинка 5fd3dd1f4f1e7554895377

Чтобы тратить еще меньше времени на решение задач, сохраняйте таблицу значений тригонометрических функции углов, которые чаще всего встречаются в задачах.

Tgx 5 чему равен cos 2x. 5fd3df3e25447316799501. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3df3e25447316799501. картинка Tgx 5 чему равен cos 2x. картинка 5fd3df3e25447316799501

Примеры решения задач

Разберем пару задачек, для решения которых нужно знать основные тождества. Рассмотрите внимательно предложенные решения и потренируйтесь самостоятельно.

Задачка 1. Найдите cos α, tg α, ctg α при условии, что sin α = 12/13.

Tgx 5 чему равен cos 2x. 5fd3e1bc1ce38916882526. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3e1bc1ce38916882526. картинка Tgx 5 чему равен cos 2x. картинка 5fd3e1bc1ce38916882526

Tgx 5 чему равен cos 2x. 5fd3e1e34c1af842876907. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3e1e34c1af842876907. картинка Tgx 5 чему равен cos 2x. картинка 5fd3e1e34c1af842876907

Задачка 2. Найдите значение cos α,
если:
Tgx 5 чему равен cos 2x. 5fd3e218a15f6433135031. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3e218a15f6433135031. картинка Tgx 5 чему равен cos 2x. картинка 5fd3e218a15f6433135031

Подставляем значения sin α:

Tgx 5 чему равен cos 2x. 5fd3e33e0b994296676379. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-5fd3e33e0b994296676379. картинка Tgx 5 чему равен cos 2x. картинка 5fd3e33e0b994296676379

Как видите, задачи решаются достаточно просто, нужно лишь верно применять формулы основных тождеств.

Источник

Tgx 5 чему равен cos 2x

Чтобы решить тригонометрическое уравнение надо путём тригонометрических преобразований свести его к простейшему тригонометрическому уравнению. Напомним формулы решений простейших тригонометрических уравнений.

1. `sinx=a`. Если `|a|>1`, решений нет. Если `|a| 1`, решений нет. Если `|a| Уравнение распадается на два:

1) `2sinx-1=0`, `sinx=1/2` и `x=(-1)^npi/6+pin,n in Z`.

2) `3cosx+1=0`, `cosx=-1/3` и `x=+- arccos(-1/3)+2pin,n in Z`.

Отметим, что в сериях решений 1) и 2) не было бы ошибкой использовать разные буквы (например, `n` и `m`), т. к. идёт перечисление решений.

Используя формулу приведения `sin2x=cos(pi/2-2x)`, преобразуем наше уравнение `cos(pi/2-2x)+cos(5x-pi/6)=0` или `2cos((3x+pi/3)/2)*cos((7x-(2pi)/3)/2)=0`.

Уравнение распадётся на два:

1) `cos((3x+pi/3)/2)=0`; `(3x+pi/3)/2=pi/2+pin,ninZ`;

II. Сведение уравнения к алгебраическому от одного переменного

Решить уравнение `4sin^3x=3cos(x+(3pi)/2)`.

По формуле приведения `cos(x+(3pi)/2)=sinx`,

поэтому уравнение запишется: `4sin^3x=3sinx`.

Отметим, что в случае двух уравнений `sinx=+-(sqrt3)/2` мы записали не объединение стандартных формул `(-1)^n(+-pi/3)+pin,ninZ`, а более простую, которая получается, если изобразить решения этих уравнений на тригонометрическом круге (рис. 1). (Две верхние точки – решения уравнения `sinx=(sqrt3)/2`, а две нижние – решения уравнения `sinx=-(sqrt3)/2`).

Tgx 5 чему равен cos 2x. 6f415d329a3ef199922945018e8193ee. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-6f415d329a3ef199922945018e8193ee. картинка Tgx 5 чему равен cos 2x. картинка 6f415d329a3ef199922945018e8193ee

`x=pin,ninz`; `x=+-pi/3+pin,n inZ`.

Решить уравнение `cos2x+sin^2x=0,5`.

Воспользуемся формулой `cos2x=1-2sin^2x`.

Получим: `1-sin^2x=0,5` или `sin^2x=1/2`, `sinx=+-1/sqrt2`.

Это уравнение можно решить и пользуясь формулой `sin^2x+(1-cos2x)/2`. Тогда оно преобразуется к виду: `cos2x=0`, `2x=pi/2+pin,ninZ`, или

Геометрически множества точек (1) и (2) совпадают (рис. 2). Так что решения тригонометрических уравнений могут быть записаны в разной форме.

Tgx 5 чему равен cos 2x. 41c8ad4ebea54a35eeef28000b171e9f. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-41c8ad4ebea54a35eeef28000b171e9f. картинка Tgx 5 чему равен cos 2x. картинка 41c8ad4ebea54a35eeef28000b171e9f

III. Однородные уравнения

(хотя формально эти уравнения можно отнестик предыдущему типу)

Решить уравнение `5sin^2x-4sinx*cosx-cos^2x=0`.

Это однородное уравнение второго порядка. Так как `cosx!=0` (иначе из нашего уравнения следовало бы, что `sinx=0` что противоречит основному тригонометрическому тождеству `sin^2x+cos^2x=1`), то разделим наше уравнение на `cos^2x`. Получим уравнение `5″tg»^2x-4″tg»x-1=0`. Откуда `»tg»x=1` или `»tg»x=-1/5`. Следовательно, `x=pi/4+pin,ninZ`, или `x=-«arctg»1/5+pin,ninZ`.

Решить уравнение `2+3sinxcosx=7sin^2x`.

Воспользуемся основным тригонометрическим тождеством `1=sin^2x+cos^2x`. Преобразуем наше уравнение к однородному уравнению второго порядка: `2(sin^2x+cos^2x)+3sinxcosx=7sin^2x` или `5sin^2x-3sinxcosx-2cos^2x=0`. Здесь `cosx!=0` (в противном случае из последнего уравнения следовало бы, что `sinx!=0` что противоречит основному тригонометрическому тождеству). Делим последнее уравнение на `cos^2x`. Получаем уравнение `5″tg»^2x-3″tg»x-2=0`.

Откуда `»tg»x=1` или `»tg»x=-2/5`. И значит, `x=pi/4+pin,ninZ`, или `x=-«arctg»2/5+pin,ninZ`

Наконец рассмотрим уравнение, сводящееся к однородному третьего порядка.

Решить уравнение `sin^3x+13cos^3x-cosx=0`.

Перепишем это уравнение так:

Это однородное уравнение третьего порядка. Деля его на `cos^3x` (`cosx!=0` для решений нашего уравнения), получим уравнение относительно `»tg»x`

Делаем замену: `t=»tg»x`. Алгебраическое уравнение `t^3-t^2+12=0` имеет корень `t=-2` (находится подбором среди целых делителей числа `12`). Далее деля многочлен `t^3-t^2+12` на `(t+12)`, раскладываем левую часть алгебраического уравнения на множители

Уравнение `t^2-3t+6=0` не имеет действительных корней, т. к. `D sqrt2` не даёт решений. Число `|1-sqrt3| при `2x+varphi=pi/2+2pin,ninZ`.

`max_Rf(x)=-2`, `min_R f(x)=-12`.

Рассмотрим теперь более сложные тригонометрические уравнения, в которых надо делать отбор корней.

V. Рациональные тригонометрические уравнения

Решить уравнение `(cos2x+cosx+1)/(2sinx+sqrt3)=0`.

Не будем решать это неравенство, а изобразим на тригонометрическом круге (рис. 3а) точки, не удовлетворяющие ОДЗ.

Решаем уравнение `cos2x+cosx+1=0`.

Преобразуем его: `(2cos^2x-1)+cosx+1=0`, `2cos^2x+cosx=0`,

Tgx 5 чему равен cos 2x. a69ecc1538a25f9ae631511f7586cd94. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-a69ecc1538a25f9ae631511f7586cd94. картинка Tgx 5 чему равен cos 2x. картинка a69ecc1538a25f9ae631511f7586cd94

Изобразим решения уравнения `cosx=0` на тригонометрическом круге (рис. 3б). Они удовлетворяют ОДЗ.

Изобразим решения уравнения `cosx=-1/2` на тригонометрическом круге (рис. 3в). Мы видим, что точки `x=-(2pi)/3+2pin,ninZ`, не удовлетворяют ОДЗ, а точки `x=(2pi)/3+2pin,ninZ`, удовлетворяют ОДЗ. Таким образом,

Решить уравнение `(sinx)/(sin3x)+(sin5x)/(sinx)=8cosxcos3x`.

Умножим уравнение на `sinx*sin3x`. Получим:

Преобразуем это уравнение:

Ещё раз воспользуемся формулой

в правой части последнего уравнения и умножим его на `2`. Получим

`(1-cos2x)+(cos2x-cos8x)=2(cos4x-cos8x)` или `1+cos8x-2cos4x=0`.

Если `cos4x=1`, то `4x=2pin,x=(pin)/2,ninZ`.

1. Изображаем точки

на тригонометрическом круге (рис. 4а). Геометрически их `4` штуки (для `n=0,1,2,3` – далее они повторяются).

2. Изображаем точки

которые не удовлетворяют ОДЗ на тригонометрическом круге (4б). Их `6` штук (для `m=0,1,2,3,4,5` – далее они повторяются).

Tgx 5 чему равен cos 2x. 09c1551ca52a1bc59ac5fd7d4ef2e54f. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-09c1551ca52a1bc59ac5fd7d4ef2e54f. картинка Tgx 5 чему равен cos 2x. картинка 09c1551ca52a1bc59ac5fd7d4ef2e54fTgx 5 чему равен cos 2x. 098adcdbf160375483dd7dbc2ae12f33. Tgx 5 чему равен cos 2x фото. Tgx 5 чему равен cos 2x-098adcdbf160375483dd7dbc2ae12f33. картинка Tgx 5 чему равен cos 2x. картинка 098adcdbf160375483dd7dbc2ae12f33

Видно, что совпадения точек в `(3)` и `(4)` будут при `x=pin,ninZ`. Эти значения надо исключить из решения, т. е. в ответ пойдут точки

С решениями уравнения

`pi/8+(pin)/4=(pim)/3 iff 1/8+n/4=m/3 iff`

`iff 3+6n=8m iff 3=2(4m-3n)`.

Последнее равенство невозможно, т. к. слева стоит нечётное число, а справа чётное.

Отметим, что и для решений уравнения `cos4x=1` отбор можно было сделать аналитически. А именно смотрим, существуют ли целые `m` и `n` такие, что `(pin)/2=(pim)/3 iff 3n=2m`. Видим, что `n` делится на `2`. Тогда `n=2k` и `m=3k,kinZ`. Т. е. из решения уравнения `cos4x=1` надо исключить `x=(pin)/2`, где `n=2k`, т. е. оставить `x=(pin)/2` с `n=2k+1,kinZ`. Но при `n=2k+1` в серии `x=(pin)/2` останутся `x=pi/2(2k+1)=pi/2+pik,kinZ`, что и было нами получено на тригонометрическом круге.

Иногда отбор решений предлагается сделать в условии задачи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *