В чем заключается принцип суперпозиции колебаний
Принцип суперпозиции. Сложение колебаний
Часто тело участвует в двух или нескольких колебаниях. Например, груз, подвешенный на пружине к потолку рессорного вагона, колеблется относительно точки подвеса, которая в свою очередь совершает колебания вместе с вагоном на его рессорах. Таким образом, груз будет совершать движение, складывающееся из двух колебаний. В таких случаях необходимо найти результирующее колебание, иными словами, колебания необходимо сложить.
По принципу суперпозиции эти колебания рассматриваются как независимые, и результирующее смещение находится в каждый момент времени как векторная сумма смещений отдельных колебаний. В случае сложения колебаний, направленных по одной прямой, результирующее смещение равно алгебраической сумме смещений отдельных колебаний.
При сложении колебаний можно пользоваться аналитическим, графическим методами и методом векторных диаграмм.
Сложим гармонические колебания одного направления и одинаковой частоты:
Покажем, что результирующее колебание также является гармоническим колебанием той же частоты, т.е. что
где А — амплитуда результирующего колебания; — его начальная фаза. Тогда
Используя формулу косинуса суммы двух углов, получим
это уравнение будет тождеством относительно t, если коэффициенты при и в его левой части равны соответствующим коэффициентам в правой части в любой момент времени:
Решив эту систему уравнений, получим
Угол наклона вектора к оси Ох равен начальной фазе результирующего колебания. Из рисунка 2 видно, что?Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз При сложении гармонических колебаний одного направления, но разных частот, результирующее колебание не является гармоническим. Еще более сложными оказываются результирующие колебания, полученные при сложении колебаний, происходящих в разных направлениях.
Учебники
Журнал «Квант»
Общие
Принцип суперпозиции. Сложение колебаний
Часто тело участвует в двух или нескольких колебаниях. Например, груз, подвешенный на пружине к потолку рессорного вагона, колеблется относительно точки подвеса, которая в свою очередь совершает колебания вместе с вагоном на его рессорах. Таким образом, груз будет совершать движение, складывающееся из двух колебаний. В таких случаях необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. По принципу суперпозиции эти колебания рассматриваются как независимые, и результирующее смещение находится в каждый момент времени как векторная сумма смещений отдельных колебаний. В случае сложения колебаний, направленных по одной прямой, результирующее смещение равно алгебраической сумме смещений отдельных колебаний.
При сложении колебаний можно пользоваться аналитическим, графическим методами и методом векторных диаграмм.
Сложим гармонические колебания одного направления и одинаковой частоты:
\(x_1 = A_1 x \cos (\omega t + \varphi_1); \) \(x_2 = A_2 x \cos (\omega t + \varphi_2); \)
1. Аналитический метод. Результирующее смещение
\(x = x_1 + x_2 = A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2).\)
Покажем, что результирующее колебание также является гармоническим колебанием той же частоты, т.е. что
\(x = A \cos (\omega t + \varphi),\)
где А — амплитуда результирующего колебания; \(\varphi\) — его начальная фаза. Тогда
\(A \cos (\omega t + \varphi) = A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2).\)
Используя формулу косинуса суммы двух углов, получим
Это уравнение будет тождеством относительно t, если коэффициенты при \(
\sin \omega t\) в его левой части равны соответствующим коэффициентам в правой части в любой момент времени:
\(A \cos \varphi = A_1 \cos \varphi_1 + A_2 \cos \varphi_2,\) \(A \sin \varphi = A_1 \sin \varphi_1 + A_2 \sin \varphi_2.\)
Решив эту систему уравнений, получим
2. Графический метод. Сложение сводится к суммированию ординат в каждый момент времени (чем больше точек, тем точнее) — рисунок 13.6.
x = x_1 + x_2\), где х1 + х2 — сумма проекций векторов \(\vec A_1\) и \(\vec A_2\) на ось Ох. Из математики известно, что сумма проекций векторов равна проекции вектора суммы, т.е. \(
A_ <1x>+ A_<2x>=A_x,\) где \(A = \vec A_1 + \vec A_2.\) Следовательно, амплитуда результирующего колебания равна модулю вектора \(\vec A\). Из рисунка 13.7 видно, что по теореме косинусов
Угол наклона \(\varphi\) вектора к оси Ох равен начальной фазе результирующего колебания. Из рисунка 13.7 видно, что Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз \(\varphi_2-\varphi_1\) При сложении гармонических колебаний одного направления, но разных частот, результирующее колебание не является гармоническим. Еще более сложными оказываются результирующие колебания, полученные при сложении колебаний, происходящих в разных направлениях.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 371-373.
Принцип суперпозиции
* Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Любое сложное движение можно разделить на два и более простых.Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть векторная сумма напряженности полей отдельных зарядов.
Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:
* Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.
Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.
Связанные понятия
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость.
Большая Энциклопедия Нефти и Газа
Колебания в виде суперпозиции колебаний ( или волн) с близкими частотами могут возникать н нелинейных системах. [5]
Результирующее движение представляет собой суперпозицию колебаний двух типов: свободных и вынужденных колебаний. [7]
Суперпозиция состояний квантовой теории существенно от-личается от суперпозиции колебаний в классической физике, в которой суперпозиция колебания с самим собой приводит к новому колебанию с большей или меньшей амплитудой. Далее, в классической теории колебаний существует состояние покоя, в котором всюду амплитуда колебания равна нулю. В квантовой же теории равенство нулю волновой функции во всех точках пространства соответствует отсутствию состояния. [9]
Суперпозиция состояний квантовой теории существенно отличается от суперпозиции колебаний в классической физике, в которой суперпозиция колебания с самим собой приводит к но-яому колебанию с большей или меньшей амплитудой. Далее, в классической теории колебаний существует состояние покоя, в котором всюду амплитуда колебания равна нулю. В квантовой же теории равенство нулю волновой функции во всех точках пространства соответствует отсутствию состояния. [10]
В основе ее лежит тот приводимый нами без доказательства факт, что любой стационарный процесс может быть представлен в виде суперпозиции колебаний с частотой v, случайной амплитудой и фазой. Так называемый частотный спектр 5 ( v) является в таком представлении мерой среднего квадрата энергии, вносимой колебанием с частотой v в процесс Xt. Как будет показано, S ( v) есть не что иное, как преобразование Фурье корреляционной функции, и, следовательно, содержит ту же информацию о процессе, что и корреляционная функция. Тем не менее может случиться так, что в зависимости от конкретного приложения получить одну функцию будет быстрее и легче, чем другую, или одна функция окажется более удобной для того, чтобы охарактеризовать функциональную зависимость Xt от времени. [11]
Саито и его сотрудники [17] рассмотрели колебания молекулы, окруженной соседями, около положения, соответствующего ее локальной равновесной конформации. Анализ был основан на предположении о том, что суперпозиция колебаний представляет собой набор нормальных колебаний. [14]
Такой радиоприемник называется детекторным. В результате указанной операции получаются детектированные колебания ( рис. 365, б), представляющие собой суперпозицию колебаний высокой и низкой частот. [15]
Принцип суперпозиции — определение, формула и значение
Большая часть популярных доктрин, открытых на сегодня, описывает довольно своеобразные явления — механические движения, тепловые процессы, электрические явления и так далее. Однако существуют мнения, которые относятся ко всем областям физических явлений. Одним из таких теоретических понятий считается принцип суперпозиции (ПС).
Общая концепция
Можно столкнуться с принципом суперпозиции всякий раз, когда есть больше одного источника электростатического поля. Затем в каждой точке пространства происходит сборка линий, поступающих из каждого источника. Поскольку интенсивность является вектором, в каждой точке добавляют друг к другу векторы любого из источников, то есть учитывают их значения направления и отдачи.
Самый простой способ — добавить параллельные векторы, затем просто вычесть значения, и уравнение становится скалярным. В любом ином случае угол между векторами должен быть принят во внимание. В общем, векторное уравнение суперпозиции полей может быть сохранено через знак суммы. Определяется принцип суперпозиции формулой:
E = ∑ − → E i E → = ∑ E i →
Напряжение электростатического поля
Стоит рассмотреть напряжённость электрического поля, принцип суперпозиции, создаваемый двумя начальными зарядами одновременно в любой точке пространства. Например, есть 2 источника, положительный заряд и отрицательный, примерно одинаковых значений, то есть диполь. Нужно выяснить результирующую напряжённость электростатического поля в 3 точках.
Сначала отмечают вспомогательные линии, которые проходят через каждую из трёх точек и оба источника. Затем по очереди рисуют интенсивность в каждой из точек, основываясь на обеих линиях. Стоит отметить важную информацию о принципе суперпозиции электрических полей: направление и возврат вектора интенсивности будут такими же, как и у линии, действующей на положительный заряд, размещённый в этой точке.
Нужно рассмотреть первый пункт, поскольку пробный заряд всегда +. Интенсивность от источника плюсового будет влево. Он представлен в виде вектора E1 +. Ток от источника отрицания будет отправлен в то же место, поскольку противоположные заряды притягивают друг друга. Он как вектор E1-. Поскольку сила электростатического поля будет вектором, результирующий ток — сумма двухкомпонентных линий. Он в виде E1. Первая точка близка к положительному источнику, потому вектор интенсивности от него больше, чем отрицательный заряд.
Разделяя их, однажды в точке 2 сила, исходящая от нагрузки отрицательного Е2, направляется на источник, а исходящая от нагрузки положительного Е2 + направляется от него. Точка 2 находится на одинаковом расстоянии от обоих полей, поэтому значения линий напряжения E2 + E2 равны. Так как векторы не параллельны, применяют метод параллелограмма для их добавления — рисуют его стороны, что являются векторами интенсивности (ВИ). Сумма — диагональ, исходящая из начала. В результате получают E2.
Точно так же это будет для пункта 3. E3 + от источника, E3 направлена наоборот. Длинная диагональ представляет собой сумму векторов компонентов, то есть результирующей интенсивности в точке E3.
Полученные уравнения являются векторными, поэтому в расчётах следует учитывать не только значение, но также их направление и возврат. Это означает, что для трёх точек только одна с номером 1 может быть легко представлена в скалярной форме. Поскольку векторы E1 + E1 находятся на одной прямой, они параллельны. Их значения должны быть добавлены, потому что их возвраты, то есть стрелки, будут в одном направлении. Следовательно, в этом случае скалярное уравнение выглядит так же, как вектор.
Введение в волновую суперпозицию
Волны окружают нас, и их присутствие влияет на ряд явлений. Можно представить себе нахождение в лодке и слышимую сирену корабля. В этом случае можно получить звуковую волну непосредственно, а также ту, которая отражается от морской воды. Чтобы понять это, нужно сосредоточиться на базовой концепции суперпозиции, а также на знаниях, связанных с теоремой.
Пример струнной волны для определения суперпозиции на основе теоремы поможет лучше всё понять. В соответствии с этим чистое перемещение любого компонента строки в течение заданного времени равно алгебраическому набору смещений, вызванных каждой волной. Потому такой метод добавления отдельных сигналов для оценки частоты называется принципом суперпозиции.
ПС выражается утверждением, что перекрывающиеся волны алгебраически добавляются для создания результирующей линии. Исходя из этого (f1, f2 …., fn), они не мешают движению друг друга. Следовательно, суперпозиция волн может привести к следующим трем последствиям:
Конструктивное и деструктивное вмешательство
Это когда две волны движутся в определённом или одном и том же направлении. Согласно ПС, последующее смещение можно записать в виде решения:
y (x, t) = y m sin (kx-ωt) + y m sin (kx-ωt+ϕ) = 2 y m cos (ϕ/2) sin (kx-ωt+ϕ/2)
Эта волна имеет развитие амплитуды, которая зависит от фазы (ϕ). Считается, что две линии находятся в фазе (ϕ = 0). Они мешают конструктивно. Кроме того, результирующая часть имеет двойную амплитуду по сравнению с отдельными волнами. С другой стороны, задача, когда две линии имеют противоположную фазу (ϕ = 180). Они оказывают разрушающее воздействие на друг друга.
Две синусоиды в противоположных направлениях
Бегущая волна распространяется из одного места в другое, но стоячая выглядит как неподвижная. Предположим, что две линии (имеющие одинаковые свойства — амплитуду, длину и частоту) передвигаются в противоположных направлениях.
Основываясь на системе суперпозиции, конечная амплитуда может быть записана как формулировка:
y (x, t) = y m sin (kx-ωt) + y m sin (kx+ωt) = 2 y m sin (kx) cos (ωt)
Согласно теореме о суперпозиции, несколько волн не называют бегущими, поскольку зависимость положения и времени делится. В этом случае амплитуда, в зависимости от точки или местоположения, составляет 2ymsin (kx). Она не будет смещаться, но сможет стоять с колебанием вверх и вниз на основе независимого cos (wt).
Линии электропередач
Электрическое поле в пространстве обычно можно создать силовыми линиями. Понятие было введено М. Фарадеем при изучении закона взаимодействия магнетизма. Затем концепцию индукции разработал Джон Максвелл.
Важные особенности магнитной теории заключаются в следующем:
Принцип супербора
С точки зрения квантовой механики, этот принцип содержит большое количество особенностей, которые нельзя просто принять. Это связано с тем, что фактически эта отрасль физики имеет дело, прежде всего, с другими состояниями объекта. С точки зрения традиционной механики, они должны быть элементарно взаимоисключающими. Принцип суперпозиции, который на квантовом уровне еще не полностью понят ученым, подразумевает, среди прочего, необходимость суперотбора, то есть главного класса фактора, который оказывает наибольшее влияние на пучок сил в определенный момент.
Подводя итоги, можно сказать следующее: в тот момент, когда поток электростатического поля больше, чем 1 заряд, то в каждой точке пространства поля всех линий собираются, и результирующий ВИ является суммой всех компонентов.