В чем заключается принцип суперпозиции
Принцип суперпозиции
* Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Любое сложное движение можно разделить на два и более простых.Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть векторная сумма напряженности полей отдельных зарядов.
Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:
* Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.
Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.
Связанные понятия
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость.
Принцип суперпозиции — определение, формула и значение
Большая часть популярных доктрин, открытых на сегодня, описывает довольно своеобразные явления — механические движения, тепловые процессы, электрические явления и так далее. Однако существуют мнения, которые относятся ко всем областям физических явлений. Одним из таких теоретических понятий считается принцип суперпозиции (ПС).
Общая концепция
Можно столкнуться с принципом суперпозиции всякий раз, когда есть больше одного источника электростатического поля. Затем в каждой точке пространства происходит сборка линий, поступающих из каждого источника. Поскольку интенсивность является вектором, в каждой точке добавляют друг к другу векторы любого из источников, то есть учитывают их значения направления и отдачи.
Самый простой способ — добавить параллельные векторы, затем просто вычесть значения, и уравнение становится скалярным. В любом ином случае угол между векторами должен быть принят во внимание. В общем, векторное уравнение суперпозиции полей может быть сохранено через знак суммы. Определяется принцип суперпозиции формулой:
E = ∑ − → E i E → = ∑ E i →
Напряжение электростатического поля
Стоит рассмотреть напряжённость электрического поля, принцип суперпозиции, создаваемый двумя начальными зарядами одновременно в любой точке пространства. Например, есть 2 источника, положительный заряд и отрицательный, примерно одинаковых значений, то есть диполь. Нужно выяснить результирующую напряжённость электростатического поля в 3 точках.
Сначала отмечают вспомогательные линии, которые проходят через каждую из трёх точек и оба источника. Затем по очереди рисуют интенсивность в каждой из точек, основываясь на обеих линиях. Стоит отметить важную информацию о принципе суперпозиции электрических полей: направление и возврат вектора интенсивности будут такими же, как и у линии, действующей на положительный заряд, размещённый в этой точке.
Нужно рассмотреть первый пункт, поскольку пробный заряд всегда +. Интенсивность от источника плюсового будет влево. Он представлен в виде вектора E1 +. Ток от источника отрицания будет отправлен в то же место, поскольку противоположные заряды притягивают друг друга. Он как вектор E1-. Поскольку сила электростатического поля будет вектором, результирующий ток — сумма двухкомпонентных линий. Он в виде E1. Первая точка близка к положительному источнику, потому вектор интенсивности от него больше, чем отрицательный заряд.
Разделяя их, однажды в точке 2 сила, исходящая от нагрузки отрицательного Е2, направляется на источник, а исходящая от нагрузки положительного Е2 + направляется от него. Точка 2 находится на одинаковом расстоянии от обоих полей, поэтому значения линий напряжения E2 + E2 равны. Так как векторы не параллельны, применяют метод параллелограмма для их добавления — рисуют его стороны, что являются векторами интенсивности (ВИ). Сумма — диагональ, исходящая из начала. В результате получают E2.
Точно так же это будет для пункта 3. E3 + от источника, E3 направлена наоборот. Длинная диагональ представляет собой сумму векторов компонентов, то есть результирующей интенсивности в точке E3.
Полученные уравнения являются векторными, поэтому в расчётах следует учитывать не только значение, но также их направление и возврат. Это означает, что для трёх точек только одна с номером 1 может быть легко представлена в скалярной форме. Поскольку векторы E1 + E1 находятся на одной прямой, они параллельны. Их значения должны быть добавлены, потому что их возвраты, то есть стрелки, будут в одном направлении. Следовательно, в этом случае скалярное уравнение выглядит так же, как вектор.
Введение в волновую суперпозицию
Волны окружают нас, и их присутствие влияет на ряд явлений. Можно представить себе нахождение в лодке и слышимую сирену корабля. В этом случае можно получить звуковую волну непосредственно, а также ту, которая отражается от морской воды. Чтобы понять это, нужно сосредоточиться на базовой концепции суперпозиции, а также на знаниях, связанных с теоремой.
Пример струнной волны для определения суперпозиции на основе теоремы поможет лучше всё понять. В соответствии с этим чистое перемещение любого компонента строки в течение заданного времени равно алгебраическому набору смещений, вызванных каждой волной. Потому такой метод добавления отдельных сигналов для оценки частоты называется принципом суперпозиции.
ПС выражается утверждением, что перекрывающиеся волны алгебраически добавляются для создания результирующей линии. Исходя из этого (f1, f2 …., fn), они не мешают движению друг друга. Следовательно, суперпозиция волн может привести к следующим трем последствиям:
Конструктивное и деструктивное вмешательство
Это когда две волны движутся в определённом или одном и том же направлении. Согласно ПС, последующее смещение можно записать в виде решения:
y (x, t) = y m sin (kx-ωt) + y m sin (kx-ωt+ϕ) = 2 y m cos (ϕ/2) sin (kx-ωt+ϕ/2)
Эта волна имеет развитие амплитуды, которая зависит от фазы (ϕ). Считается, что две линии находятся в фазе (ϕ = 0). Они мешают конструктивно. Кроме того, результирующая часть имеет двойную амплитуду по сравнению с отдельными волнами. С другой стороны, задача, когда две линии имеют противоположную фазу (ϕ = 180). Они оказывают разрушающее воздействие на друг друга.
Две синусоиды в противоположных направлениях
Бегущая волна распространяется из одного места в другое, но стоячая выглядит как неподвижная. Предположим, что две линии (имеющие одинаковые свойства — амплитуду, длину и частоту) передвигаются в противоположных направлениях.
Основываясь на системе суперпозиции, конечная амплитуда может быть записана как формулировка:
y (x, t) = y m sin (kx-ωt) + y m sin (kx+ωt) = 2 y m sin (kx) cos (ωt)
Согласно теореме о суперпозиции, несколько волн не называют бегущими, поскольку зависимость положения и времени делится. В этом случае амплитуда, в зависимости от точки или местоположения, составляет 2ymsin (kx). Она не будет смещаться, но сможет стоять с колебанием вверх и вниз на основе независимого cos (wt).
Линии электропередач
Электрическое поле в пространстве обычно можно создать силовыми линиями. Понятие было введено М. Фарадеем при изучении закона взаимодействия магнетизма. Затем концепцию индукции разработал Джон Максвелл.
Важные особенности магнитной теории заключаются в следующем:
Принцип супербора
С точки зрения квантовой механики, этот принцип содержит большое количество особенностей, которые нельзя просто принять. Это связано с тем, что фактически эта отрасль физики имеет дело, прежде всего, с другими состояниями объекта. С точки зрения традиционной механики, они должны быть элементарно взаимоисключающими. Принцип суперпозиции, который на квантовом уровне еще не полностью понят ученым, подразумевает, среди прочего, необходимость суперотбора, то есть главного класса фактора, который оказывает наибольшее влияние на пучок сил в определенный момент.
Подводя итоги, можно сказать следующее: в тот момент, когда поток электростатического поля больше, чем 1 заряд, то в каждой точке пространства поля всех линий собираются, и результирующий ВИ является суммой всех компонентов.
Принцип суперпозиции электрических полей.
Принцип суперпозиции (наложения) полей формулируется так:
Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна: .
Принцип суперпозиции полей справедлив для случая, когда поля, созданные несколькими различными зарядами, не оказывают никакого влияния друг на друга, т. е. ведут себя так, как будто других полей нет. Опыт показывает, что для полей обычных интенсивностей, встречающихся в природе, это имеет место в действительности.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно воспользоваться выражением напряженности поля точечного заряда.
На рисунке ниже показано, как в точке A определяется напряженность поля , созданная двумя точечными зарядами q1 и q2.
Силовые линии электрического поля.
Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.
Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой и каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.
На рисунках ниже изображены линии напряженности положительно заряженного шарика (рис. 1); двух разноименно заряженных шариков (рис. 2); двух одноименно заряженных шариков (рис. 3) и двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами (рис. 4).
Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства однородно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.
В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересечение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.
Поле заряженного шара.
Напряженность поля заряженного проводящего шара на расстоянии от центра шара, превышающем его радиус r ≥ R. определяется по той же формуле, что и поля точечного заряда . Об этом свидетельствует распределение силовых линий (рис. а), аналогичное распределению линий напряженности точечного заряда (рис. б).
Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.
Общая концепция
Можно столкнуться с принципом суперпозиции всякий раз, когда есть больше одного источника электростатического поля. Затем в каждой точке пространства происходит сборка линий, поступающих из каждого источника. Поскольку интенсивность является вектором, в каждой точке добавляют друг к другу векторы любого из источников, то есть учитывают их значения направления и отдачи.
Самый простой способ — добавить параллельные векторы, затем просто вычесть значения, и уравнение становится скалярным. В любом ином случае угол между векторами должен быть принят во внимание. В общем, векторное уравнение суперпозиции полей может быть сохранено через знак суммы. Определяется принцип суперпозиции формулой:
E = ∑ − → E i E → = ∑ E i →
Напряжение электростатического поля
Стоит рассмотреть напряжённость электрического поля, принцип суперпозиции, создаваемый двумя начальными зарядами одновременно в любой точке пространства. Например, есть 2 источника, положительный заряд и отрицательный, примерно одинаковых значений, то есть диполь. Нужно выяснить результирующую напряжённость электростатического поля в 3 точках.
Сначала отмечают вспомогательные линии, которые проходят через каждую из трёх точек и оба источника. Затем по очереди рисуют интенсивность в каждой из точек, основываясь на обеих линиях. Стоит отметить важную информацию о принципе суперпозиции электрических полей: направление и возврат вектора интенсивности будут такими же, как и у линии, действующей на положительный заряд, размещённый в этой точке.
Нужно рассмотреть первый пункт, поскольку пробный заряд всегда +. Интенсивность от источника плюсового будет влево. Он представлен в виде вектора E1 +. Ток от источника отрицания будет отправлен в то же место, поскольку противоположные заряды притягивают друг друга. Он как вектор E1-. Поскольку сила электростатического поля будет вектором, результирующий ток — сумма двухкомпонентных линий. Он в виде E1. Первая точка близка к положительному источнику, потому вектор интенсивности от него больше, чем отрицательный заряд.
Разделяя их, однажды в точке 2 сила, исходящая от нагрузки отрицательного Е2, направляется на источник, а исходящая от нагрузки положительного Е2 + направляется от него. Точка 2 находится на одинаковом расстоянии от обоих полей, поэтому значения линий напряжения E2 + E2 равны. Так как векторы не параллельны, применяют метод параллелограмма для их добавления — рисуют его стороны, что являются векторами интенсивности (ВИ). Сумма — диагональ, исходящая из начала. В результате получают E2.
Точно так же это будет для пункта 3. E3 + от источника, E3 направлена наоборот. Длинная диагональ представляет собой сумму векторов компонентов, то есть результирующей интенсивности в точке E3.
Полученные уравнения являются векторными, поэтому в расчётах следует учитывать не только значение, но также их направление и возврат. Это означает, что для трёх точек только одна с номером 1 может быть легко представлена в скалярной форме. Поскольку векторы E1 + E1 находятся на одной прямой, они параллельны. Их значения должны быть добавлены, потому что их возвраты, то есть стрелки, будут в одном направлении. Следовательно, в этом случае скалярное уравнение выглядит так же, как вектор.
Введение в волновую суперпозицию
Волны окружают нас, и их присутствие влияет на ряд явлений. Можно представить себе нахождение в лодке и слышимую сирену корабля. В этом случае можно получить звуковую волну непосредственно, а также ту, которая отражается от морской воды. Чтобы понять это, нужно сосредоточиться на базовой концепции суперпозиции, а также на знаниях, связанных с теоремой.
Пример струнной волны для определения суперпозиции на основе теоремы поможет лучше всё понять. В соответствии с этим чистое перемещение любого компонента строки в течение заданного времени равно алгебраическому набору смещений, вызванных каждой волной. Потому такой метод добавления отдельных сигналов для оценки частоты называется принципом суперпозиции.
ПС выражается утверждением, что перекрывающиеся волны алгебраически добавляются для создания результирующей линии. Исходя из этого (f1, f2 …., fn), они не мешают движению друг друга. Следовательно, суперпозиция волн может привести к следующим трем последствиям:
Конструктивное и деструктивное вмешательство
Это когда две волны движутся в определённом или одном и том же направлении. Согласно ПС, последующее смещение можно записать в виде решения:
y (x, t) = y m sin (kx-ωt) + y m sin (kx-ωt+ϕ) = 2 y m cos (ϕ/2) sin (kx-ωt+ϕ/2)
Эта волна имеет развитие амплитуды, которая зависит от фазы (ϕ). Считается, что две линии находятся в фазе (ϕ = 0). Они мешают конструктивно. Кроме того, результирующая часть имеет двойную амплитуду по сравнению с отдельными волнами. С другой стороны, задача, когда две линии имеют противоположную фазу (ϕ = 180). Они оказывают разрушающее воздействие на друг друга.
Две синусоиды в противоположных направлениях
Бегущая волна распространяется из одного места в другое, но стоячая выглядит как неподвижная. Предположим, что две линии (имеющие одинаковые свойства — амплитуду, длину и частоту) передвигаются в противоположных направлениях.
Основываясь на системе суперпозиции, конечная амплитуда может быть записана как формулировка:
y (x, t) = y m sin (kx-ωt) + y m sin (kx+ωt) = 2 y m sin (kx) cos (ωt)
Согласно теореме о суперпозиции, несколько волн не называют бегущими, поскольку зависимость положения и времени делится. В этом случае амплитуда, в зависимости от точки или местоположения, составляет 2ymsin (kx). Она не будет смещаться, но сможет стоять с колебанием вверх и вниз на основе независимого cos (wt).
Линии электропередач
Электрическое поле в пространстве обычно можно создать силовыми линиями. Понятие было введено М. Фарадеем при изучении закона взаимодействия магнетизма. Затем концепцию индукции разработал Джон Максвелл.
Важные особенности магнитной теории заключаются в следующем:
Принцип супербора
С точки зрения квантовой механики, этот принцип содержит большое количество особенностей, которые нельзя просто принять. Это связано с тем, что фактически эта отрасль физики имеет дело, прежде всего, с другими состояниями объекта. С точки зрения традиционной механики, они должны быть элементарно взаимоисключающими. Принцип суперпозиции, который на квантовом уровне еще не полностью понят ученым, подразумевает, среди прочего, необходимость суперотбора, то есть главного класса фактора, который оказывает наибольшее влияние на пучок сил в определенный момент.
Подводя итоги, можно сказать следующее: в тот момент, когда поток электростатического поля больше, чем 1 заряд, то в каждой точке пространства поля всех линий собираются, и результирующий ВИ является суммой всех компонентов.
Принцип суперпозиции электрических полей
Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.
Принцип суперпозиции
Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.
Принцип суперпозиции:
Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.
При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.
Полевая трактовка принципа суперпозиции
Полевая трактовка: напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.
Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:
Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.
Все же следует также заметить, что в случае очень малых расстояний (порядка
Например, на поверхности тяжелых ядер при напряженности порядка
10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.
Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:
В этой записи интегрирование проводится по области распределения зарядов:
Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.
Примеры применения принципа суперпозиции
Решение
На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1 :
Силы F 12 → и F 14 → являются равными по модулю, определим их так:
Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .
Решение
В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:
Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:
Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим: