В чем заключается задача логики

Курс логики. Логика и ее законы. т. 1-3

Тема 1. Понятие и предмет логики.

1. Абстрактное мышление как объект логики.
2. Предмет формальной логики.
3. Соотношение логики и языка.

1. Абстрактное мышление как объект логики

2. Предмет формальной логики

Итак, логика (в наиболее широком понимании ее предмета) исследует структуру мышления, раскрывает лежащие в его основе закономерности. При этом абстрактное мышление, обобщенно, опосредствованно и активно отражая действительность, неразрывно связано с языком. Языковые выражения являются той реальностью, строение и способ употребления которой дает нам знание не только о содержании мыслей, но и об их формах, о законах мышления. Поэтому в исследовании языковых выражений и отношений между ними логика видит одну из своих основных задач. А язык в целом является при этом косвенным объектом ее внимания и интереса.

3. Соотношение языка и мышления

Тема 2. История развития логики.

Логика как самостоятельная наука начинала формироваться в Индии, Китае, Греции задолго до нашей эры. На начальных этапах ее развития в Древней Индии большое внимание уделялось теории умозаключения, которое отождествлялось с доказательством. В Древнем же Китае большинство логических теорий было разбросано по различным трактатам, которые посвящались вопросам философии, этики, политики и естествознания. В них акцентируется внимание на таких логических проблемах, как теория имен, теория высказывания, теория рассуждения, законы мышления.

В середине века (VI-ХV вв.) логика в значительной мере была подчинена интересам богословия. В этот период теоретический поиск в логике развернулся вокруг проблемы объяснения природы общих понятий. Так, представители реализма того периода, продолжая взгляды Платона, утверждали, что общие понятия в логике существуют реально вне единичных понятий; при этом они составляют некую сверхъестественную сущность последних. Подобной точки зрения придерживались, например, Ансельм Кентерберийский (1033-1109), Фома Аквинский (1225-1274).

Успехи опытного естествознания ХVI-ХVII вв. характеризовались, прежде всего, развитием математики и механики, земных и небесных тел. Ограниченность научного познания того времени привела к установлению метафизического взгляда на природу как на застывшую и неизменную систему. Метафизический способ мышления впоследствии сказался на понимании предмета формальной логики. Ее законам придали абсолютный характер, т.е. распространили их сферу действия не только на мышление, но и на окружающий человека природный мир.
Весомый вклад в развитие логики внесли французские исследователи, прежде всего Р. Декарт (1596-1650). Он сформулировал четыре основных правила любого научного исследования:
1) истинно лишь то, что познано, проверено и доказано;
2) расчленять сложное на простое;
3) восходить от простого к сложному, от более очевидного к менее очевидному;
4) исследовать предмет во всех деталях.

Последователи Р. Декарта Арно и Николь в 1662 г. написали книгу «Логика, или Искусство мыслить», где поставили задачу освобождения логики Аристотеля от внесенных в нее последующими представителями логической науки схоластических ошибок.

Обстоятельную критику взглядам И. Канта на сущность формальной логики дал Г.В.Ф. Гегель. В то же время он критически относился вообще к формальной логике. Свое отношение к этой науке как «метафизической» он строил исходя из объективно-идеалистического положения о тождестве законов мышления и бытия. Критику законов формальной логики Г.В. Ф. Гегель дал во второй книге своей работы «Наука логики», в разделе «Учение о сущности». По мнению Гегеля, законы логики носят всеобщий характер, распространяются на все сферы действительности. Однако такой универсальной логикой должна стать не формальная логика, а диалектика саморазвития, «инобытием» которого является внешний мир.

Определенное внимание развитию логики уделяли К. Маркс (1818-1883), Ф.Энгельс (1820-1895), а позже В.И. Ленин (1870-1924). В своих философских работах они отмечали, что традиционная логика является теорией правильно познающего мышления. Мышление же, не подчиняющееся положениям логики, не способно адекватно отразить объективную реальность. В.И. Ленин отмечал, в частности, ограниченность познавательных задач формальной логики. Однако такая ограниченность не лишает ее права оставаться наукой со своим специальным предметом изучения.

Крупными русскими исследователями в области логики были М.И. Каринский (1840-1917) и Л.В. Рутковский (1859-1920). Так, М.И. Каринский внес значительный вклад в разработку классификации умозаключений. Основной замысел его логической теории характеризуется стремлением построить аксиоматико-дедуктивную систему логики, исходя из основного отношения равенства (т.е. «тождества»); описать в ней дедуктивные и индуктивные умозаключения.

С начала XX столетия формальная логика получает дальнейшее развитие. Возникла математическая логика, широко применившая метод математической формализации и специальный аппарат символов к определенному кругу логических операций. Представляют математическую логику Г. Фреге (1848- 1925), Б. Рассел (1872-1970), Б. Аккерман (1896-1962) и другие мыслители.
Так, Б. Рассел считал, что если гипотеза относится не к одной или нескольким частным вещам, но к любому предмету, то такие выводы составляют математику.

Формализация и предельное абстрагирование от конкретного содержания высказываний позволили решить ряд трудных логических задач в области математики, и нашли применение в работе электронно-вычислительных машин, теории программирования и т.п. Значительный вклад в разработку современной математической логики внесли наши отечественные ученые математики: А.П. Колмогоров, А.А. Марков, П.С. Новиков, М.В. Келдыш и др. Однако математическая логика не охватывает всех проблем естественной логики мышления. За формальной логикой остается ее познавательная функция и методическая роль как науки о законах и формах правильной мысли, ведущей к утверждению истины.

Тема 3. Основные законы логики и их характеристика.

1. Закон тождества.
2. Закон непротиворечия.
3. Закон исключенного третьего.
4. Закон достаточного основания.

3.Закон исключенного третьего.

4. Закон достаточного основания.

Каждое утверждение должно быть обоснованным. Требование доказанности выражает закон достаточного основания: всякая мысль признается истинной, если она имеет достаточное основание.
Если есть b, то есть и основания для а. Например, если адрес на конверте указан точно, письмо дойдет до адресата.
Достоверным основанием какой-либо мысли может быть любая другая, уже проверенная и установленная мысль, из которой с необходимостью вытекает истинность данной мысли.
Если из истинности суждения а следует истинность суждения b, то а является основанием для b, а b- следствие этого основания. Все это базируется на объективности причинно-следственных связей реального мира. Однако в суждениях иногда мы меняем местами причину и следствие. Например, дождь-причина того, что крыша мокрая. Но мы судим иначе: если видим мокрую крышу (а), делаем вывод о том, что был дождь (b).

Источник

Логика как наука: понятие, объект и предмет, законы логики

В чем заключается задача логики. lazy placeholder. В чем заключается задача логики фото. В чем заключается задача логики-lazy placeholder. картинка В чем заключается задача логики. картинка lazy placeholder

Наверное, нет человека, который не использовал бы слово «логика». Умозаключения, кажущиеся нам правильными, мы называем «логичными». А если кто-то поступает странно, мы говорим, что в его действиях отсутствует логика. Но на самом деле, логика это не только разумный ход рассуждений. Это целая наука, изучающая, как из одних суждений следует истинность или ложность других. Сегодня мы поговорим о том, что она собой представляет, какие законы логики и формы логического мышления существуют, а также выясним, какие функции выполняет эта наука.

Что такое логика?

Логика – это наука о формах, приёмах и операциях мышления, позволяющих устанавливать или опровергать истинность определенных утверждений, исходя из заведомо известных фактов. Сложно сказать точно, когда она возникла. Отдельные элементы логики присутствуют в работах древнегреческих, древнекитайских и древнеиндийских мыслителей 6-5 веков до н. э., но первым её основные принципы сформулировал Аристотель в 4 веке до н. э.

Изначально она возникла как направление в философии, но со временем развилась в сложную систему знаний и стала самостоятельной научной дисциплиной – формальной логикой. От остальных наук, изучающих мышление, она отличается тем, что абстрагируется от содержания размышлений и высказываний, а изучает их структуру и внутренние закономерности.

Термин «логика» образован от греческого слова λόγος (логос – мысль, слово, причина). Сегодня у него есть два основных значения. Им может обозначаться как научная дисциплина, изучающая закономерности мыслительных процессов и логических построений, так и совокупность правил, которых необходимо придерживаться при построении непротиворечивых умозаключений.

Объект и предмет логики

Как и любая наука, логика имеет объект и предмет изучения. Объектом логики является мышление человека – отображение различных явлений и процессов в его мыслях, а также построение умозаключений на основе уже имеющихся знаний о внешнем мире. Здесь следует отметить, что мышление является объектом не только для логики, но и для большого количества других наук.

Предмет логики – это система закономерностей правильного мышления. По сути, логика изучает один аспект познавательного мышления – законы и принципы, ведущие к построению непротиворечивых умозаключений. А поскольку философия изучает все аспекты познания мира, логика является философской наукой.

Формы логического мышления

Форма мышления – это структура мысли, определяющая взаимосвязи между отдельными её элементами.

Существует три основных формы мышления:

Какие бы мысли ни крутились сейчас в вашей головы, каждая из них относится к одной из этих трёх форм. Наш жизненный опыт включает знание миллионов разных понятий, которые мы мгновенно объединяем в суждения и делаем на их основе определённые умозаключения.

Законы логики

Существует 4 закона, знание которых позволяет лучше понять, что такое логика. Придерживаясь этих законов, можно гарантированно делать правильные и логичные умозаключения при условии наличия достаточного количества точно установленных фактов:

1. Закон тождества

Суть данного закона состоит в том, что суждение сохраняет своё предметное и смысловое значение в рамках одного контекста (например, в пределах одного логического рассуждения). Иными словами, недопустимо в процессе размышления подменять одно значение понятия или суждения другим, поскольку это приведёт к ложному выводу.

К примеру, утверждение «Выучить новый язык можно, общаясь с носителями на житейские темы» истинно в отношение английского или испанского языка, но слабо применимо к языкам программирования. Подобная подмена понятий является одним из грубых нарушений закона тождества. В данном примере она очевидна, но в некоторых случаях она используется как успешный демагогический приём.

2. Закон непротиворечия

Этот закон (называемый также «законом противоречия») гласит, что два высказывания, противоречащих друг другу, не могут быть истинными одновременно. Как минимум одно из них ложно. К примеру, если на столе лежит шар, полностью выкрашенный в один цвет, утверждения «Этот шар белый» и «Этот шар чёрный» не могут быть истинными одновременно. Но они оба вполне могут быть ложными, если шар, к примеру, красный.

Есть три основных типа логических противоречий:

Контактные противоречия обычно не пытаются скрыть. Их используют сознательно, чтобы смягчить негативное высказывание («Ты хорошо справился, но это не совсем то, о чём я просил») или, наоборот, усилить его («Отлично! Ты опять всё испортил!»). Дистантные противоречия могут применять демагоги, чтобы запутать собеседника, но чаще их используют по ошибке неопытные или плохо подготовившиеся ораторы.

3. Закон исключённого третьего

Если одно суждение отрицает другое, то одно из них является ложным, а второе – истинным. Здесь важно не путать, что подразумевается под отрицанием.

К примеру, утверждения «Этот шар белый» и «Этот шар чёрный» являются всего лишь взаимоисключающими. А отрицающими друг друга являются утверждения «Этот шар белый» и «Этот шар не белый» (одно из них обязательно является истинным, какого бы цвета ни был шар).

4. Закон достаточного основания

Этот закон ввёл Готфрид Лейбниц. Его суть состоит в том, что для того, чтобы считать утверждение истинным, необходимо располагать однозначными доказательствами, исключающими другие варианты. В повседневной жизни люди пренебрегают этим законом логики чаще, чем любым другим, делая однозначные выводы по косвенным фактам.

К примеру, если в середине лета вы несколько дней подряд не видели соседа, которого обычно встречаете ежедневно, можно предположить, что он уехал в отпуск. Скорее всего, так и есть, но всё же этот вывод противоречит закону достаточного основания, поскольку нельзя исключать, к примеру, болезнь или командировку.

Нарушение законов логики

Когда законы логики нарушаются, возникают логические ошибки. Существует три основных типа логических ошибок:

Софизмы – это основной инструмент в софистике. Они используются для того, чтобы запутать собеседника, подвести его к неправильным выводам или заставить выглядеть глупо перед окружающими. Парадоксы могут возникать, в частности, когда смешиваются количественные и качественные характеристики предметов и явлений либо присутствуют неявные условия. В таком случае рассуждение, выглядящее логически правильным, может приводить к выводам, противоречащим действительности или другому логически правильному рассуждению.

В качестве примера можно привести «Парадокс кучи». Его суть состоит в следующем: если из кучи гравия убрать 1 камешек, куча останется кучей, однако если продолжать этот процесс, то в какой-то момент куча перестанет существовать. Противоречие здесь в том, что убирание одного (любого!) камня не должно приводить к исчезновению кучи. И всё же она исчезает именно от того, что из неё убирают один камень. Причина этого парадокса в том, что не сформулирована взаимосвязь между количественными и качественными характеристиками кучи.

Другой пример логической ошибки – известная апория Зенона про Ахиллеса, который никогда не догонит черепаху. Условие парадокса специально формулируется так, чтобы исключить из рассмотрения точку пути, в которой атлет обгоняет черепаху. В результате доказательство того, что он не сможет этого сделать, не противоречит законам логики. Ошибка заложена в самой формулировке задачи, в которой неявно присутствует условие «На отрезке до точки X».

Виды логики

Объясняя, что такое логика, обычно говорят в первую очередь о формальной логике. При этом существует ещё два раздела, фактически являющихся самостоятельными дисциплинами: математическая (символическая) логика и диалектическая логика. Рассмотрим каждый из разделов подробнее.

1. Формальная логика

Формальная логика – это научная дисциплина, изучающая структуру и истинность утверждений. Её создателем считается Аристотель (4 век до н. э.), рассматривавший её как возможность оперировать формальными фактами, абстрагируясь от их природы и содержания. Это позволяет обеспечить логическую правильность суждений, поскольку анализу подвергается только структура утверждения, но не его содержание.

По сути, наше мышление подчиняется формальной логике. Основываясь на имеющихся фактах, мы делаем логические выводы и принимаем решения. Однако мы не можем полностью абстрагироваться от природы и содержания суждений, кроме того, эмоции могут оказывать очень сильное влияние на наши выводы и действия. Поэтому людям свойственны нелогичные поступки.

2. Математическая логика

Изначально это была часть формальной логики, но в 19 веке она выделилась в самостоятельный раздел (при этом в ней по-прежнему соблюдаются все принципы формальной логики). Она пополнилась новыми математическими методами и специализированными нотациями. Благодаря этому символическая логика превратилась в мощный инструмент, применяемый современными науками при решении задач и доказательстве теорий.

Данная модель делает процесс познания более точным, поскольку в ней слова естественных языков с размытым смыслом заменяются формальными определениями, исключающими двусмысленность и размытость суждений. Все суждения математической логики формулируются на точном языке, не допускающем неоднозначных трактовок. Для таких языков чётко определена семантика (значения терминов) и синтаксис (совокупность формул или правил построения объектов языка).

3. Диалектическая логика

Это философская дисциплина, изучающая мышление вообще. Её основателем считается немецкий философ Георг Гегель (1770-1831). Она основывается на формальной логике, и всё же в ней учитывается содержание явлений, объектов и процессов. В ней используются такие принципы как:

Зачем нужна логика?

Главная цель логики заключается в том, чтобы обеспечить эффективный инструментарий для поиска решений и доказательств, применимый в любых сферах знаний. Благодаря логике мы можем оперировать фактами, достоверность которых установлена и доказана. Логика необходима при решении таких задач как:

Заключение

Логика – это наука о правильном мышлении и о способах рассуждения, не ведущих к ошибочным выводам. Это одна из важнейших научных дисциплин, ведь её принципами и законами пользуются все существующие науки. И даже если мы этого не замечаем, вся наша жизнь подчинена логике. Мы используем её в быту и общении, она заложена в законах, которые мы соблюдаем, без неё был бы невозможен научно-технический прогресс, достижениями которого мы пользуемся ежедневно.

Источник

Глава I. Определение и задачи логики

Определение логики. Для того чтобы определить, что такое логика, мы должны предварительно выяснить, в чём заключается цель человеческого познания. Цель познания заключается в достижении истины при помощи мышления, цель познания есть истина. Логика же есть наука, которая показывает, как должно совершаться мышление, чтобы была достигнута истина; каким правилам мышление должно подчиняться для того, чтобы была достигнута истина. При помощи мышления истина иногда достигается, а иногда не достигается. То мышление, при помощи которого достигается истина, должно быть названо правильным мышлением. Таким образом, логика может быть определена как наука о законах правильного мышления, или наука о законах, которым подчиняется правильное мышление.

Из этого определения видно, что логика исследует законы мышления. Но так как исследование законов мышления как известного класса психических процессов является также предметом психологии, то предмет логики выяснится лучше в том случае, если мы рассмотрим отличие логики от психологии в исследовании законов мышления.

Психология и логика. На мышление мы можем смотреть с двух точек зрения. Мы можем на него смотреть, прежде всего, как на известный процесс, законы которого мы исследуем. Это будет точка зрения психологическая. Психология изучает, как совершается процесс мышления. С другой стороны, мы можем смотреть на мышление, как на средство достижения истины. Логика исследует, каким законам должно подчиняться мышление, чтобы оно могло привести к истине.

Итак, разница между психологией и логикой в отношении к процессу мышления может быть выражена следующим образом. Психология рассматривает безразлично всевозможные роды мыслительной деятельности: рассуждение гения, бред больного, мыслительный процесс ребёнка, животного – для психологии представляют одинаковый интерес, потому что она рассматривает только, как осуществляется процесс мышления; логика же рассматривает условия, при которых мысль может быть правильной. В этом отношении логика сближается с грамматикой. Подобно тому, как грамматика указывает правила, которым должна подчиняться речь, чтобы быть правильной, так логика указывает нам законы, которым должно подчиняться наше мышление для того, чтобы быть правильным.

Для того чтобы понять утверждение, что существуют известные правила, которым должно подчиняться мышление, рассмотрим, в чём заключается задача логики.

Задача логики. Есть положения или факты, истинность которых усматривается непосредственно, и есть положения или факты, истинность которых усматривается посредственно, именно через посредство других положений или фактов. Если я скажу: «я голоден», «я слышу звук», «я ощущаю тяжесть», «я вижу, что этот предмет большой», «я вижу, что этот предмет движется» и т.п., то я выражу факты, которые должны считаться непосредственно познаваемыми. Такого рода факты мы можем назвать также непосредственно очевидными, потому что они не нуждаются ни в каком доказательстве: их истинность очевидна без доказательств. В самом деле, разве я нуждаюсь в доказательстве, что передо мной находится предмет, имеющий зелёный цвет? Неужели, если бы кто-нибудь стал доказывать, что этот предмет не зелёный, а чёрный, я поверил бы ему? Этот факт для меня непосредственно очевиден. К числу непосредственно очевидных положений относятся, прежде всего, те положения, которые являются результатом чувственного восприятия.

Все те факты, которые совершаются в нашем отсутствии (например, прошедшие явления, а также и будущие), могут быть познаваемы только посредственно. Я вижу, что дождь идёт, – это факт непосредственного познания; что ночью шёл дождь, есть факт посредственного познания, потому что я об этом узнаю через посредство другого факта, именно того факта, что почва мокрая. Факты посредственного познания или просто посредственное познание является результатом умозаключения, вывода. По развалинам я умозаключаю, что здесь был город. Если бы я был на этом месте тысячу лет назад, то я непосредственно воспринял бы этот город. По следам я заключаю, что здесь проехал всадник. Если бы я был здесь час назад, то я непосредственно воспринял бы самого всадника.

Посредственное знание доказывается, делается убедительным, очевидным при помощи знаний непосредственных. Этот последний процесс называется доказательством.

Таким образом, есть положения, которые не нуждаются в доказательствах, и есть положения, которые нуждаются в доказательствах и очевидность которых усматривается посредственно, косвенно.

Если есть положения, которые нуждаются в доказательствах, то в чём же заключается доказательство? Доказательство заключается в том, что мы положения неочевидные стараемся свести к положениям или фактам непосредственно очевидным или вообще очевидным. Такого рода сведение положений неочевидных к положениям очевидным лучше всего можно видеть на доказательствах математических. Если возьмём, например, теорему Пифагора, то она на первый взгляд совсем не очевидна.

Но если мы станем её доказывать, то, переходя от одного положения к другому, мы придём в конце концов к аксиомам и определениям, которые имеют непосредственно очевидный характер. Тогда и самая теорема сделается для нас очевидной. Таким образом, познание посредственное нуждается в доказательствах; познание непосредственное в доказательствах не нуждается и служит основой для доказательства познаний посредственных.

Заметив такое отношение между положениями посредственно очевидными и положениями непосредственно очевидными, мы можем понять задачи логики. Когда мы доказываем что-либо, т.е. когда мы сводим неочевидные положения к непосредственно очевидным, то в этом процессе сведения мы можем сделать ошибку: наше умозаключение может быть ошибочным. Но существуют определённые правила, которые показывают, как отличать умозаключения правильные от умозаключений ошибочных. Эти правила указывает логика. Задача логики поэтому заключается в том, чтобы показать, каким правилам должно следовать умозаключение, чтобы быть верным. Если мы эти правила знаем, то мы можем определить, соблюдены ли они в том или другом процессе умозаключения.

Из такого определения задач логики можно понять значение логики.

Значение и польза логики. Для выяснения значения логики обыкновенно принято исходить из определения её. Мы видели, что логика определяется как наука о законах правильного мышления. Из этого определения логики, по-видимому, следует, что стоит изучить законы правильного мышления и применять их в процессе мышления, чтобы можно было мыслить вполне правильно. Многим даже кажется, что логика может указывать средства для открытия истины в различных областях знания.

Но в действительности это неверно. Логика не поставляет своею целью открытие истин, а ставит своею целью доказательство уже открытых истин. Логика указывает правила, при помощи которых могут быть открыты ошибки. Вследствие этого, благодаря логике можно избежать ошибок. Поэтому становится понятным утверждение английского философа Дж. С. Милля, что польза логики главным образом отрицательная. Её задача заключается в том, чтобы предостеречь от возможных ошибок. Вследствие этого практическая важность логики чрезвычайно велика. «Когда я принимаю в соображение, – говорит Дж. С. Милль, – как проста теория умозаключения, какого небольшого времени достаточно для приобретения полного знания её принципов и правил и даже значительной опытности в их применении, я не нахожу никакого извинения для тех, кто, желая заниматься с успехом каким-нибудь умственным трудом, упускает это изучение. Логика есть великий преследователь тёмного и запутанного мышления; она рассеивает туман, скрывающий от нас наше невежество и заставляющий нас думать, что мы понимаем предмет, в то время когда мы его не понимаем. Я убеждён, что в современном воспитании ничто не приносит большей пользы для выработки точных мыслителей, остающихся верными смыслу слов и предложений и находящихся постоянно настороже против терминов неопределённых и двусмысленных, как логика».

Многие часто ссылаются на так называемый здравый смысл и говорят: «Да ведь ошибки можно находить без помощи логики, посредством лишь одного здравого смысла». Это, конечно, справедливо, но часто бывает недостаточно найти ошибку, нужно ещё объяснить её, уметь точно охарактеризовать и даже обозначить её. Иной знает, что в том или другом умозаключении есть ошибка, но он не в состоянии сказать, почему это умозаключение нужно считать ошибочным. Это часто возможно сделать только благодаря знанию правил логики.

Логика имеет также значение для определения взаимного отношения между науками. Различие между науками, например математическими, физическими и историческими, может стать ясным только в том случае, если мы рассмотрим различие методов познания с логической точки зрения.

История логики и главное направление её. Творцом логики как науки следует считать Аристотеля (384–322). Логика Аристотеля имела господствующее значение не только в древности, но также и в средние века, в эпоху так называемой схоластической философии. Заслуживает упоминания сочинение последователей философа Декарта (1596–1650), которое называлось: La logique ou lart de penser (1662). Эта логика, которая называется логикой Port, которая, принадлежит к так называемому формальному направлению. В Англии Бэкон (1561–1626) считается основателем особого направления в логике, которое называется индуктивным, наилучшими выразителями которого в современной логике являются Дж. С. Милль (1806–1873) и Л. Бэн (1818–1903).

Для того чтобы понять, в чём заключается различие между формальным и индуктивным направлением в логике, заметим, что называется материальной и формальной истинностью. Мы считаем какое-либо положение истинным материально, когда оно соответствует действительности или вещам. Мы считаем то или другое заключение истинным формально в том случае, когда оно выводится с достоверностью из тех или иных положений, т.е., когда верен способ соединения мыслей, самое же заключение может совсем не соответствовать действительности. Для объяснения различия между формальной и материальной истинностью возьмём примеры, нам даются два положения:

Все вулканы суть горы

Все гейзеры суть вулканы

Из этих двух положений с необходимостью следует, что «все гейзеры суть горы». Это заключение формально истинно, потому что оно с необходимостью следует из двух данных положений, но материально оно ложно, потому что оно не соответствует действительности; гейзеры не суть горы. Таким образом, умозаключение истинное формально может быть ложным материально.

Но возьмём следующий пример:

Все богачи тщеславны

Некоторые люди не суть богачи

След., некоторые люди не суть тщеславны.

Это заключение истинно материально, потому что действительно «некоторые люди не суть тщеславны», но оно формально ложно, потому что не вытекает из данных положений. В самом деле, если бы было сказано, что только богачи тщеславны, тогда о всяком не-богаче мы сказали бы, что он не тщеславен. Но у нас в первом положении утверждается: «все богачи тщеславны»; этим не исключается, что и другие люди могут быть тщеславными. В таком случае можно быть небогатым и в то же время быть тщеславным; из того, что кто-нибудь не есть богач, не следует, что он не может быть тщеславным. Из этого ясно, что указанное заключение не вытекает из данных положений необходимо.

Те правила, которые указывают, когда получаются заключения истинные формально, мы можем назвать формальными критериями истинности; те правила, которые определяют материальную истинность, мы можем назвать материальными критериями истинности.

Формальная логика по преимуществу изучает те отделы логики, в которых может быть применяем формальный критерий истинности. Индуктивная логика, в противоположность формальной логике, по преимуществу разрабатывает те отделы, в которых применяется материальный критерий.

Вопросы для повторения

Как определяется логика? Какое различие существует между психологией и логикой? Какие положения можно считать непосредственно очевидными? Какие положения нужно считать посредственно очевидными? В чём заключается задача доказательства? В чём заключается задача логики? Почему «здравый смысл» не может заменить логики? Какие существуют основные направления в логике?

Поделиться ссылкой на выделенное

Нажмите правой клавишей мыши и выберите «Копировать ссылку»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *