V0t at2 2 ΡΡΠΎ Π·Π° ΡΠΎΡΠΌΡΠ»Π°
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡΡΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ
ΡΠ΅ΠΎΡΠΈΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠ°
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅ΡΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ, Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΡΡΠΌΡΠΌΠΈ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°ΡΠ°Π»Π° ΠΈ ΠΊΠΎΠ½ΡΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠ»ΠΎΡΠ°Π΄ΡΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ»ΡΠΆΠ°Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π°, Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΡΠΌΠΈ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ β ΠΎΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ (ΠΏΡΡΡ) ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠΈΠΌΠ΅Ρ β1. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=3 Ρ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅ΡΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ°ΠΌΠΈ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΌΠΈ ΠΊ Π½Π΅ΠΉ. ΠΠΎΡΡΠΎΠΌΡ Π² Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅:
ΠΠ·Π²Π»Π΅ΠΊΠ°Π΅ΠΌ ΠΈΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π°Π½Π½ΡΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ 0, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅Π»ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΡΠΎΠ΄Π΅Π»Π°Π»ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΡΡ, Π° Π·Π°ΡΠ΅ΠΌ Π²Π΅ΡΠ½ΡΠ»ΠΎΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.
ΠΠ°ΡΠΈΠ°Π½ΡΡ Π·Π°ΠΏΠΈΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΡΠ°ΡΡΠΎ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π°. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ Π²ΠΌΠ΅ΡΡΠΎ Π½Π΅Π΅ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡΡ ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π°:
ΠΡΠ»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π·Π½Π°ΠΊ Β«βΒ». ΠΡΠ»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅, ΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π·Π½Π°ΠΊ Β«+Β».
ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π° 0 (v0 = 0), ΡΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π½ΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠΈΠΌΠ΅Ρ β2. ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡΡΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°ΡΠ°Π» ΡΠΎΡΠΌΠΎΠ·ΠΈΡΡ ΠΏΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ 72 ΠΊΠΌ/Ρ. Π’ΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π·Π°Π½ΡΠ»ΠΎ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ. ΠΠΎΠ΄ΡΠ»Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠΎΡΡΠ°Π²ΠΈΠ» 2 ΠΌ/Ρ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π·Π³ΠΎΠ½Π΅ ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π°
ΠΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ, Π΅ΡΠ»ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ ( Π° ββ v ). ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡΡ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ( Π° ββ v ), Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ Π² Π΄Π²Π° ΡΡΠ°ΠΏΠ°:
ΠΡΠ°ΠΏ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ
ΠΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ°:
ΠΠΎΠ³Π΄Π° ΡΠ΅Π»ΠΎ ΡΠΎΡΠΌΠΎΠ·ΠΈΡ, ΡΠ΅ΡΠ΅Π· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ t1ΠΎΠ½ΠΎ ΠΎΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΡΠ°Π²Π½Π° 0:
ΠΡΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ s1 ΡΠ°Π²Π½ΠΎ:
ΠΡΠ°ΠΏ ΡΠ°Π·Π³ΠΎΠ½Π°
ΠΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° ΡΠ°Π²Π½ΠΎ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ°:
Π’Π΅Π»ΠΎ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠ°Π·Π³ΠΎΠ½ΡΡΡΡΡ ΡΡΠ°Π·Ρ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ. ΠΠΎΡΡΠΎΠΌΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t2 ΡΠ°Π²Π½Π°:
ΠΡΠΈ ΡΠ°Π·Π³ΠΎΠ½Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ s2 ΡΠ°Π²Π½ΠΎ:
ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½:
ΠΠΎΠ»Π½ΡΠΉ ΠΏΡΡΡ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ Π΅Π³ΠΎ l), ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΡΠ΅Π»ΠΎΠΌ Π·Π° ΠΎΠ±Π° ΡΡΠ°ΠΏΠ°, ΡΠ°Π²Π΅Π½:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° Π΄Π²Π° ΡΡΠ°ΠΏΠ°, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ°Π»ΡΡΠΈΠΊ ΡΠ½Π°ΡΠ°Π»Π° ΡΠ°Π·ΠΎΠ³Π½Π°Π»ΡΡ, ΠΏΠΎΡΠΎΠΌ Π·Π°ΡΠΎΡΠΌΠΎΠ·ΠΈΠ». Π’ΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡΡΡ Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π²ΡΠΎΡΠΎΠΌΡ ΡΡΠ°ΠΏΡ. Π§Π΅ΡΠ΅Π· Π½Π΅Π³ΠΎ ΠΌΡ Π²ΡΡΠ°Π·ΠΈΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅:
ΠΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ° (ΡΠ°Π·Π³ΠΎΠ½Π°) ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΡΠ»ΡΠΆΠΈΡ Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π² ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π² n-Π½ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠ½ΠΎΠ³Π΄Π° Π² ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π·Π°Π΄Π°ΡΠΈ, ΠΊΠΎΠ³Π΄Π° Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Π·Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ ΡΠ΅Π»ΠΎ Π½Π°ΡΠΈΠ½Π°Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠΎΠΊΠΎΡ. Π ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ° ΠΏΠ΅ΡΠ²ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΅Π»ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, ΡΠ°Π²Π½ΠΎΠ΅:
ΠΠ° Π²ΡΠΎΡΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΅Π»ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, ΡΠ°Π²Π½ΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 2 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 1 ΡΠ΅ΠΊΡΠ½Π΄Ρ:
ΠΠ° ΡΡΠ΅ΡΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΅Π»ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅, ΡΠ°Π²Π½ΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° 2 ΡΠ΅ΠΊΡΠ½Π΄Ρ:
ΠΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΡΠ΅Π»ΠΎΠΌΡ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ:
ΠΠ· ΡΠΎΡΠΌΡΠ» ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π° 1, 2 ΠΈ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ²ΠΈΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ: ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π° n-Π½ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° (2nβ1), Π³Π΄Π΅ n β ΡΠ΅ΠΊΡΠ½Π΄Π°, Π·Π° ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ ΠΈΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊ:
Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° n-Π½ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ
ΠΡΠΈΠΌΠ΅Ρ β4. ΠΠ²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΡΠ°Π·Π³ΠΎΠ½ΡΠ΅ΡΡΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ 3 ΠΌ/Ρ 2. ΠΠ°ΠΉΡΠΈ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π° 6 ΡΠ΅ΠΊΡΠ½Π΄Ρ.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ Π·Π° 1 ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π° Π·Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ: Π·Π° 2, 3, 4 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΈ Ρ. Π΄. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π°:
Π³Π΄Π΅ t β Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°, Π° n β ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ²ΡΠΉ Π½ΠΎΠΌΠ΅Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°.
ΠΡΠ΅ΠΌΡ ΠΎΡ 4 Π΄ΠΎ 6 ΡΠ΅ΠΊΡΠ½Π΄ Π²ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ β ΡΡΠΎ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ: 4-Π°Ρ, 5-Π°Ρ ΠΈ 6-Π°Ρ. ΠΠ½Π°ΡΠΈΡ, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ. ΠΠΎ Π½Π°ΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΡΠΏΠ΅Π»ΠΎ ΠΏΡΠΎΠΉΡΠΈ Π΅ΡΠ΅ 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ. ΠΠ½Π°ΡΠΈΡ, Π²ΡΠ΅ΠΌΡ ΠΎΡ 4 Π΄ΠΎ 6 ΡΠ΅ΠΊΡΠ½Π΄ β ΡΡΠΎ Π²ΡΠΎΡΠΎΠΉ ΠΏΠΎ ΡΡΠ΅ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ:
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯. ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ β ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΡΠΊΠ° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π² ΡΡΠΎΡΠΎΠ½Ρ ΠΎΡΠΈ ΠΠ₯ ( v ββOX), Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ ( v ββ a ), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄:
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π² ΡΡΠΎΡΠΎΠ½Ρ ΠΎΡΠΈ ΠΠ₯ (vββOX), Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ ( v ββ a ), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄:
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π·Π½Π°ΠΊΠ° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠΈΠΌΠ΅Ρ β6. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=0 Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½ΡΠ»Ρ. ΠΠ½Π°ΡΠΈΡ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΠΈΠ· ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±Π΅Π· Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠΈΠΌ:
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ Π³ΡΠ°ΡΠΈΠΊΠ°. ΠΡΡΡΡ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=2 Ρ. ΠΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ 30 ΠΌ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΡΠ°ΡΠΈΠΊ ΠΏΡΡΠΈ
ΠΡΠ°ΡΠΈΠΊ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ s = l.
Π ΡΠ»ΡΡΠ°Π΅ Ρ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΡΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΠΈΠ½ΠΈΡ, ΠΏΠΎΠ΄Π΅Π»Π΅Π½Π½ΡΡ Π½Π° 2 ΡΠ°ΡΡΠΈ:
Π’Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ° (Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΠΉ) ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ β ΠΎΠ½ Π»ΠΈΠ±ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΏΠΎΠΊΠΎΡ), Π»ΠΈΠ±ΠΎ ΡΠ°ΡΡΠ΅Ρ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, Ρ ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΠΈ Ρ ΠΊΠ°ΠΊΠΈΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ΅Π»ΠΎ.
ΠΡΠΈΠΌΠ΅Ρ β7. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΌΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°.
ΠΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΏΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΡΠ²Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠΎΡΡΠΎΠΌΡ Π½Π°Ρ Π³ΡΠ°ΡΠΈΠΊ β ΠΊΡΠ°ΡΠ½ΡΠΉ. ΠΡΠ°ΡΠΈΠΊ ΠΏΡΡΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π΅Π³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ Π³ΡΠ°ΡΠΈΠΊΠ°. ΠΡΡΡΡ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=2 c. ΠΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΏΡΡΡ, ΡΠ°Π²Π½ΡΠΉ 5 ΠΌ. ΠΠ½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠΆΠ΅ ΡΠ°Π²Π½ΠΎ 5 ΠΌ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ:
Π’Π΅Π»ΠΎ ΠΌΠ°ΡΡΠΎΠΉ 200 Π³ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ , ΠΏΡΠΈ ΡΡΠΎΠΌ Π΅Π³ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Ρ (t) = 10 + 5t β «>β 3t 2 (Π²ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Ρ Π² Π‘Π).
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ ΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ, Π²ΡΡΠ°ΠΆΠ°ΡΡΠΈΠΌΠΈ ΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠΎΠ»Π±ΡΠ° ΠΏΠΎΠ΄Π±Π΅ΡΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΡ ΠΈΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎΠ»Π±ΡΠ° ΠΈ Π·Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΡΠ°Π±Π»ΠΈΡΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΠ΅ ΡΠΈΡΡΡ ΠΏΠΎΠ΄ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°ΡΡΠ° ΡΠ΅Π»Π°: m = 200 Π³ = 0,2 ΠΊΠ³.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Ox, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ :
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΠ΄Π΅Π»ΠΈΡΡ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°:
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΡΠΆΠ΅ ΠΏΡΠΎΠΉΠ΄Π΅Π½ΠΎ Π΄ΠΎ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΠ΅ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ:
ΠΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π½Π°:
v = v 0 + a t = 5 β 6 t
ΠΠΎΡΡΠΎΠΌΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π»Π° ΡΠ°Π²Π½Π°:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΈΡΡ Π² ΠΎΡΠ²Π΅ΡΠ΅ Π±ΡΠ΄Π΅Ρ: 34.
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ x ΡΠ΅Π»Π°, Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΡ , ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t (ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°). ΠΡΠ°ΡΠΈΠΊΠΈ Π ΠΈ Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΡΠ΅Π»Π°, ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t. Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ, Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΌΠΎΠ³ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΠΎΠ΄Π±Π΅ΡΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΈ Π·Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΠΏΠΎΠ»Π΅ ΡΠΈΡΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ ΠΠ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΡΠΎ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΡ , ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ:
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡΡΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°. ΠΠΎΡΡΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠΆΠ΅ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΎΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ β Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠ³ΠΎ, ΠΎΡΠ²Π΅Ρ Β«3Β» ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ. ΠΡΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΎΡΠ²Π΅Ρ Β«1Β». ΠΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π° Π½Π° ΠΊΠ²Π°Π΄ΡΠ°Ρ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°. ΠΠΎΡΡΠΎΠΌΡ ΠΎΡΠ²Π΅Ρ Β«1Β» ΡΠΎΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ.
ΠΡΠ°ΡΠΈΠΊ Π β ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ). ΠΠΎΡΡΠΎΠΌΡ ΠΏΠ΅ΡΠ²Π°Ρ ΡΠΈΡΡΠ° ΠΎΡΠ²Π΅ΡΠ° β Β«4Β».
ΠΡΠ°ΡΠΈΠΊ Π β ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ, Π½Π΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ). ΠΠΎΡΡΠΎΠΌΡ Π²ΡΠΎΡΠ°Ρ ΡΠΈΡΡΠ° ΠΎΡΠ²Π΅ΡΠ° β Β«2Β».
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° 3 ΡΡΠ°ΡΡΠΊΠ°:
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ t1 = 20 c Π΄ΠΎ t2 = 50 Ρ. ΠΡΠΎΠΌΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΡΠ°ΡΡΠΊΠ°:
ΠΠ°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΡΠΊΠΎΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ:
s1 β ΠΏΡΡΡ ΡΠ΅Π»Π°, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅, s2 β ΠΏΡΡΡ ΡΠ΅Π»Π°, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π½Π° Π²ΡΠΎΡΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅.
s1ΠΈ s2 ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΡΠΈ Π΄Π»Ρ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π΅ΠΌ ΠΏΡΡΠΈ s1ΠΈ s2, Π° Π·Π°ΡΠ΅ΠΌ ΡΠ»ΠΎΠΆΠΈΠΌ ΠΈΡ :
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ°ΠΊ Π²ΡΠ²Π΅ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ?
Π‘ΡΡΠΎΠ³ΠΎ Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΠ½Π° ΠΏΡΡΡΠΌ Π΄Π²ΡΠΊΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ x» = a = const ΠΏΡΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ x(0) = x0, x'(0) = v(0).
ΠΠ· ΠΏΡΠΎΡΡΡΡ
ΡΠΎΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
Π΄Π΅Π²ΡΡΠΈΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΡ: ΡΠ½Π°ΡΠ°Π»Π° Π²Π²ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, Ρ. Π΅. ΡΠΊΠΎΡΠΎΡΡΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ. ΠΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΌΠ°Π»ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ. Π Π²ΠΎΡ ΡΡΡ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΡΠ°Π»ΠΊΠΈΠ²Π°Π΅ΡΡΡ Ρ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ ΠΏΡΠ΅Π΄Π΅Π»Π° ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅: ΡΡΠ°ΡΡΠΎΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ Π½Π΅ ΠΏΡΠΎΡΡΠΎ ΠΌΠ°Π»ΡΠΌ, Π° ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΡΡΠ΅ΠΌΠΈΡΡΡΡ ΠΊ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅, Ρ. Π΅. ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π½Π΅Ρ ΠΊΠ°ΠΊ ΡΠ³ΠΎΠ΄Π½ΠΎ ΠΌΠ°Π»ΠΎ ΠΏΡΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΌ Π²ΡΠ±ΠΎΡΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ, Π»ΠΈΠ±ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π³ΠΎΠ²ΠΎΡΡΡ ΠΎ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ (ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ) ΠΊ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ, Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ, ΡΠ°Π²Π½Π°Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, Π° ΡΠ°ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ, ΠΏΡΠΎΡ
ΠΎΠ΄ΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ (0; v0), ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° v0. Π’ΠΎΠ³Π΄Π° Π½Π° ΠΌΠ°Π»ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π³Π΄Π΅ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ (Π»ΡΠ±ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅) ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄Π»ΠΈΠ½Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΠ°Π²Π½Π° ΠΏΡΡΠΈ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡ ΡΠ΅Π»ΠΎΠΌ Π·Π° Π΄Π°Π½Π½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π° ΠΎΠ±ΡΠΈΠΉ ΠΏΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΌΠ°Π»ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π·Π±ΠΈΠ²Π°Π΅ΡΡΡ ΠΎΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π² ΠΏΡΡΠΈ. Π ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΠ³Π΄Π° Π΄Π»ΠΈΠ½Π° ΡΠ°ΠΊΠΈΡ
Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΡΠΎΡΠ½ΡΠΌ.
Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΎΡ ΠΆΠ΅ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΡΠ°Π²Π΅Π½ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΠ³ΡΡΡ ΠΏΠΎΠ΄ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠΎ Π΄Π°Π½Π½Π°Ρ ΡΠΈΠ³ΡΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΡ (ΠΈΠ»ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ v0 = 0 ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ), Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π»Π΅Π²ΠΎΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ v0, ΠΏΡΠ°Π²ΠΎΠ΅ ΡΠ°Π²Π½ΠΎ v0 + at, Π° Π²ΡΡΠΎΡΠ° ΡΠ°Π²Π½Π° t, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠΎΠΉ ΡΠΈΠ³ΡΡΡ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° Π²ΡΡΠΎΡΡ, Ρ. Π΅. ((v0 + v0 + at)/2)*t = (2v0t + at^2)/2 = v0t + at^2/2. ΠΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ°Π²Π½Π° x0, ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ°Π²Π½ΠΎ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΈ, Π° ΡΠΎΠ³Π΄Π° ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ°Π²Π½Π° x = x0 + v0t + at^2/2. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΠ‘Π.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΠ‘Π.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΠ‘Π.
ΠΠ»Ρ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ y ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t Π½ΡΠΆΠ½ΠΎ ΠΊ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅ y0 ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π° Π²ΡΠ΅ΠΌΡ t:
Y = Y 0 + V0 t + at 2 /2
ΠΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
S = V0 t + at 2 / 2 (1)
ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ½ΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π·Π°Π΄Π°ΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ Ο
0 ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ Ο
ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ a. ΠΡΠ° Π·Π°Π΄Π°ΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ΅ΡΠ΅Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, Π½Π°ΠΏΠΈΡΠ°Π½Π½ΡΡ
Π²ΡΡΠ΅, ΠΏΡΡΠ΅ΠΌ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΠ· Π½ΠΈΡ
Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π²ΠΈΠ΄Π΅
S = (V 2 β V0 2 ) 1/2 /2a (2)
ΠΠ· ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο
ΡΠ΅Π»Π°, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Ο
0, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ a ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ s:
V = (V0 2 + 2aS) 1/2 (3)
ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Ο
0 ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΠΈΠ΄
S = V 2 /2a, V = (2aS) 1/2 (4)
Π‘Π»Π΅Π΄ΡΠ΅Ρ Π΅ΡΠ΅ ΡΠ°Π· ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠΎ, ΡΡΠΎ Π²Ρ ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Ο 0,Ο , s, a, y0 ΡΠ²Π»ΡΡΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
________________________________________
ΠΠΌΠΏΡΠ»ΡΡ ΡΠΈΠ»Ρ
ΠΠΌΠΏΡΠ»ΡΡ ΡΠ΅Π»Π°
ΠΠ°ΠΊΠΎΠ½ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°
________________________________________
ΠΠΌΠΏΡΠ»ΡΡ ΡΠΈΠ»Ρ.
ΠΠΎΠΊΠΎΠΉ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Ρ, ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ°. ΠΠΎ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π° Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π»ΠΈ ΡΠ΅Π»ΠΎ Π² ΠΏΠΎΠΊΠΎΠ΅ ΠΈΠ»ΠΈ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΈΠ»Ρ, Ρ. Π΅. Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ΅Π»Π°ΠΌΠΈ.
ΠΡΠ»ΠΈ Π½Π° ΡΠ΅Π»ΠΎ ΠΌΠ°ΡΡΠΎΠΉ m Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° F ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ v0 Π΄ΠΎ Π΄ΠΎ v, ΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ a Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΡΠ°Π²Π½ΠΎ
a = (v β v0)/t
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΡΡΡΠΎΠ½Π° Π΄Π»Ρ ΡΠΈΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΠΈΡΠ°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅
F = ma = m(v β v1)/t. (16.1)
ΠΠ°Π»Π΅Π΅ ΠΌΠΎΠΈ, ΠΠΈΠΊΠΎΠ»Π°Ρ Π§ΠΈΡΠΈΠ³ΠΈΠ½Π°, ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ. ΠΠ°ΠΊ ΡΠΊΠ°Π·Π°Π½ΠΎ Π² ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅:
ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ½ΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π·Π°Π΄Π°ΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ Ο
0 ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ Ο
ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ a. ΠΡΠ° Π·Π°Π΄Π°ΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ΅ΡΠ΅Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, Π½Π°ΠΏΠΈΡΠ°Π½Π½ΡΡ
Π²ΡΡΠ΅, ΠΏΡΡΠ΅ΠΌ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΠ· Π½ΠΈΡ
Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π²ΠΈΠ΄Π΅
S = (V 2 β V0 2 ) 1/2 /2a (2)
ΠΠ· ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο
ΡΠ΅Π»Π°, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Ο
0, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ a ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ s:
V = (V0 2 + 2aS) 1/2 (3)
ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Ο
0 ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΠΈΠ΄
S = V 2 /2a, V = (2aS) 1/2 (4)
Π’.Π΅. Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ (3), ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ (4), ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅
Π ΠΎΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ°Ρ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π²Π½Π° ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΈΠ· ΡΡΠΌΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ.
ΠΠΎΡΠ΅ΠΌΡ Π΄Π°Π½Π½ΡΠΉ ΡΠ°ΠΊΡ Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π»ΡΡ ΠΏΡΠΈ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΠ‘Π, Ρ ΡΠΆΠ΅ ΡΠ°Π½Π΅Π΅ ΠΎΠ±ΡΡΡΠ½ΡΠ».
ΠΠΎΡΠ΅ΠΌΡ ΠΏΡΠΈ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΠ‘Π Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°ΠΌΠ΅Π½ΠΈΠ»ΠΈ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ (Π½Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ) Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΡΠ½ΠΎ.
ΠΠΎΡΠ΅ΠΌΡ ΠΌΠΎΠΈ «ΠΎΠΏΠΏΠΎΠ½Π΅Π½ΡΡ» Π½Π΅ ΠΆΠ΅Π»Π°ΡΡ «ΠΏΠΎΠ½ΡΡΡ» ΠΈ Π·Π°Π΄ΡΠΌΠ°ΡΡΡΡ ΠΎ ΠΏΡΠ°Π²ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π, Π½Π°Π΄Π΅ΡΡΡ, ΡΠ°ΠΊΠΆΠ΅ Π²ΡΠ΅ ΡΠΆΠ΅ Π΄Π°Π²Π½ΠΎ ΠΏΠΎΠ½ΡΠ»ΠΈ.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
ΠΠΎΠ³Π΄Π° ΠΌΡ ΠΈΠ΄Π΅ΠΌ Π² ΡΠΊΠΎΠ»Ρ ΠΈΠ»ΠΈ Π½Π° ΡΠ°Π±ΠΎΡΡ, Π°Π²ΡΠΎΠ±ΡΡ ΠΏΠΎΠ΄ΡΠ΅Π·ΠΆΠ°Π΅Ρ ΠΊ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΈΠ»ΠΈ ΡΠ»Π°Π΄ΠΊΠΈΠΉ ΠΊΠΎΡΠ³ΠΈ Π³ΡΠ»ΡΠ΅Ρ Ρ Ρ ΠΎΠ·ΡΠΈΠ½ΠΎΠΌ, ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π» Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅Π» Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Β«ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅Π»Β» β ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΡΠ΅ ΡΠ»ΠΎΠ²Π° Π² ΡΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΠ»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π°ΠΌ Π½ΡΠΆΠ½Ρ:
Π ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ ΡΡΠΈ ΡΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° ΠΎΠ±ΡΠ°Π·ΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ°.
Π ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅ Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠΉ ΡΠ°Π·Π΄Π΅Π» β ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠ°. ΠΠ½ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ, ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ΅Π»ΠΎ. ΠΠ°Π»ΡΡΠ΅ ΠΌΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΎΠΏΠΈΡΠ΅ΠΌ ΡΠ°Π·Π½ΡΠ΅ Π²ΠΈΠ΄Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ΅ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°ΠΉΡΠ΅ΡΡ 😉
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ°Π²Π½ΡΠ΅ ΡΡΠ°ΡΡΠΊΠΈ ΠΏΡΡΠΈ Π·Π° ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ. ΠΡΠΎ Π»ΡΠ±ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ Ρ Π²Π°Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΠΎΡΠΎΠ³Π΅ 60 ΠΊΠΌ/Ρ, ΠΈ Ρ Π²Π°Ρ Π½Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΈΡ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΠΉ Π½Π° ΠΏΡΡΠΈ β ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ, Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ.
ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡ ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ.
Π‘ΠΊΠ°Π»ΡΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ (ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ)
ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ (ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ)
ΠΡΠΎΠ΅ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ²
ΠΠ΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΡΠ΅ΡΡΠ΅ΠΆΠ΅ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π³Π»Π°Π·Π°ΠΌΠΈ Π½Π°Π³Π»ΡΠ΄Π½ΡΡ Β«ΠΊΠ°ΡΡΠΈΠ½ΡΒ» Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΄Π½Π°ΠΊΠΎ Π²ΡΡΠΊΠΈΠΉ ΡΠ°Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠΊΡ ΠΈ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠΈΡ, ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΠΎΡΠ΅Π½Ρ ΡΡΡΠ΄ΠΎΡΠΌΠΊΠΎ. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ²ΠΎΠ΄ΡΡ ΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠΌ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΌΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ².
ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΡΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Ρ ΠΎΡΡΡ, ΡΠΎ Π΅Π³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡΠΎΡΠ°. Π Π΅ΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΎΡΠΈ β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡΠΎΡΠ°, Π½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°. ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ β Π΅Π³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΏΠΎ Π²Π΅ΠΊΡΠΎΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΡΠΈ, ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π±ΡΠ΄ΡΡ Π΄Π²Π΅ ΡΠ°Π·Π½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅Ρ Π±ΡΡΡΡΠΎΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, Π° ΡΡΠ΅Π΄Π½ΡΡ ΠΏΡΡΠ΅Π²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΏΡΡΠΈ ΠΊΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΡΡ Π±ΡΠ» ΠΏΡΠΎΠΉΠ΄Π΅Π½.
Π‘ΠΊΠΎΡΠΎΡΡΡ
β β
V = S/t
β
V β ΡΠΊΠΎΡΠΎΡΡΡ [ΠΌ/Ρ]
β
S β ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ [ΠΌ]
t β Π²ΡΠ΅ΠΌΡ [Ρ]
Π‘ΡΠ΅Π΄Π½ΡΡ ΠΏΡΡΠ΅Π²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ
V ΡΡ.ΠΏΡΡΠ΅Π²Π°Ρ = S/t
V ΡΡ.ΠΏΡΡΠ΅Π²Π°Ρ β ΡΡΠ΅Π΄Π½ΡΡ ΠΏΡΡΠ΅Π²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ [ΠΌ/Ρ]
S β ΠΏΡΡΡ [ΠΌ]
t β Π²ΡΠ΅ΠΌΡ [Ρ]
ΠΠ°Π΄Π°ΡΠ°
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅, Ρ ΠΊΠ°ΠΊΠΎΠΉ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΏΡΡΠ΅Π²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ, Π΅ΡΠ»ΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³Π° Π΄ΠΎ ΠΠ΅Π»ΠΈΠΊΠΎΠ³ΠΎ ΠΠΎΠ²Π³ΠΎΡΠΎΠ΄Π° Π² 210 ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠΎΠ² Π΅ΠΌΡ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠΉΡΠΈ Π·Π° 2,5 ΡΠ°ΡΠ°. ΠΡΠ²Π΅Ρ Π΄Π°ΠΉΡΠ΅ Π² ΠΊΠΌ/Ρ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠΎΠ·ΡΠΌΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΏΡΡΠ΅Π²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ
V ΡΡ.ΠΏΡΡΠ΅Π²Π°Ρ = S/t
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
V ΡΡ.ΠΏΡΡΠ΅Π²Π°Ρ = 210/2,5 = 84 ΠΊΠΌ/Ρ
ΠΡΠ²Π΅Ρ: Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΡΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΏΡΡΠ΅Π²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠ°Π²Π½ΠΎΠΉ 84 ΠΊΠΌ/Ρ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t).
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
x(t) = x0 + vxt
x(t) β ΠΈΡΠΊΠΎΠΌΠ°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° [ΠΌ]
x0 β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° [ΠΌ]
vx β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ [ΠΌ/Ρ]
t β ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ [Ρ]
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v