Vegas deep learning models что это
Глубокое обучение (Deep Learning): обзор
Всем привет. Уже в этом месяце в ОТУС стартует новый курс — «Математика для Data Science». В преддверии старта данного курса традиционно делимся с вами переводом интересного материала.
Аннотация. Глубокое обучение является передовой областью исследований машинного обучения (machine learning — ML). Оно представляет из себя нескольких скрытых слоев искусственных нейронных сетей. Методология глубокого обучения применяет нелинейные преобразования и модельные абстракции высокого уровня на больших базах данных. Последние достижения во внедрении архитектуры глубокого обучения в многочисленных областях уже внесли значительный вклад в развитие искусственного интеллекта. В этой статье представлено современное исследование о вкладе и новых применениях глубокого обучения. Следующий обзор в хронологическом порядке представляет, как и в каких наиболее значимых приложениях использовались алгоритмы глубокого обучения. Кроме того, представлены выгода и преимущества методологии глубокого обучения в ее многослойной иерархии и нелинейных операциях, которые сравниваются с более традиционными алгоритмами в обычных приложениях. Обзор последних достижений в области далее раскрывает общие концепции, постоянно растущие преимущества и популярность глубокого обучения.
1. Введение
Искусственный интеллект (ИИ) как интеллект, демонстрируемый машинами, является эффективным подходом к пониманию человеческого обучения и формирования рассуждений [1]. В 1950 году «Тест Тьюринга» был предложен как удовлетворительное объяснение того, как компьютер может воспроизводить когнитивные рассуждения человека [2]. Как область исследований, ИИ делится на более конкретные подобласти. Например: обработка естественного языка (Natural Language Processing — NLP) [3] может улучшить качество письма в различных приложениях [4,17]. Самым классическим подразделением в NLP является машинный перевод, под которым понимают переводом между языками. Алгоритмы машинного перевода способствовали появлению различных приложений, которые учитывают грамматическую структуру и орфографические ошибки. Более того, набор слов и словарный запас, относящиеся к теме материала, автоматически используются в качестве основного источника, когда компьютер предлагает изменения для автора или редактора [5]. На рис. 1 подробно показано, как ИИ охватывает семь областей компьютерных наук.
В последнее время машинное обучение и интеллектуальный анализ данных попали в центр внимания и стали наиболее популярными темами среди исследовательского сообщества. Совокупность этих областей исследования анализируют множество возможностей характеризации баз данных [9]. На протяжении многих лет базы данных собирались в статистических целях. Статистические кривые могут описывать прошлое и настоящее, чтобы предсказывать будущие модели поведения. Тем не менее, в течение последних десятилетий для обработки этих данных использовались только классические методы и алгоритмы, тогда как оптимизация этих алгоритмов могла бы лечь в основу эффективного самообучения [19]. Улучшенный процесс принятия решений может быть реализован на основе существующих значений, нескольких критериев и расширенных методов статистики. Таким образом, одним из наиболее важных применений этой оптимизации является медицина, где симптомы, причины и медицинские решения создают большие базы данных, которые можно использовать для определения лучшего лечения [11].
Рис. 1. Исследования в области искусственного интеллекта (ИИ) Источник: [1].
Поскольку ML охватывает широкий спектр исследований, на данный момент уже разработано множество подходов. Кластеризация, байесовская сеть, глубокое обучение и анализ дерева решений — это только их часть. Следующий обзор в основном фокусируется на глубоком обучении, его основных понятиях, проверенных и современных применениях в различных областях. Кроме того, в нем представлены несколько рисунков, отражающих стремительный рост публикаций с исследованиями в области глубокого обучения за последние годы в научных базах данных.
2. Теоретические основы
Концепция глубокого обучения (Deep Learning — DL) впервые появилась в 2006 году как новая область исследований в машинном обучении. Вначале оно было известно как иерархическое обучение в [2], и как правило оно включало в себя множество областей исследований, связанных с распознаванием образов. Глубокое обучение в основном принимает в расчет два ключевых фактора: нелинейная обработка в нескольких слоях или стадиях и обучение под наблюдением или без него [4]. Нелинейная обработка в нескольких слоях относится к алгоритму, в котором текущий слой принимает в качестве входных данных выходные данные предыдущего слоя. Иерархия устанавливается между слоями, чтобы упорядочить важность данных, полезность которых следует установить. С другой стороны, контролируемое и неконтролируемое обучение связано с меткой классов целей: ее присутствие подразумевает контролируемую систему, а отсутствие — неконтролируемую.
3. Применения
Глубокое обучение подразумевает слои абстрактного анализа и иерархические методы. Тем не менее, оно может быть использовано в многочисленных реальных приложениях. Как пример, в цифровой обработке изображений; раскраска черно-белых изображений раньше выполнялась вручную пользователями, которым приходилось выбирать каждый цвет на основе своего собственного суждения. Применяя алгоритм глубокого обучения, раскраска может выполняться автоматически с помощью компьютера [10]. Точно так же звук может быть добавлен в видео с игрой на барабанах без звука с использованием рекуррентных нейронных сетей (Recurrent Neural Networks — RNN), которые являются частью методов глубокого обучения [18].
Глубокое обучение может быть представлено как метод улучшения результатов и оптимизации времени обработки в нескольких вычислительных процессах. В области обработки естественного языка методы глубокого обучения были применены для создания подписей к изображениям [20] и генерации рукописного текста [6]. Следующие применения детальнее классифицированы в таких областях как цифровая обработка изображений, медицина и биометрия.
3.1 Обработка изображений
До того, как глубокое обучение официально утвердилось в качестве нового исследовательского подхода, некоторые приложения были реализованы в рамках концепции распознавания образов посредством обработки слоев. В 2003 году был разработан интересный пример с применением фильтрации частиц и алгоритма распространения доверия (Bayesian – belief propagation). Основная концепция этого приложения полагает, что человек может распознавать лицо другого человека, наблюдая только половину изображения лица [14], поэтому компьютер может восстановить изображение лица из обрезанного изображения.
Позже в 2006 году жадный алгоритм и иерархия были объединены в приложение, способное обрабатывать рукописные цифры [7]. Недавние исследования применили глубокое обучение в качестве основного инструмента для цифровой обработки изображений. Например, применение сверточных нейронных сетей (Convolutional Neural Networks — CNN) для распознавания радужной оболочки может быть более эффективным, чем использование привычных датчиков. Эффективность CNN может достигать 99,35% точности [16].
Мобильное распознавание местоположения в настоящее время позволяет пользователю узнать определенный адрес на основе изображения. Алгоритм SSPDH (Supervised Semantics – Preserving Deep Hashing) оказался значительным улучшением по сравнению VHB (Visual Hash Bit) и SSFS (Space – Saliency Fingerprint Selection). Точность SSPDH аж на 70% эффективнее [15].
Наконец, еще одно замечательное применение в цифровой обработке изображений с использованием метода глубокого обучения — распознавание лиц. Google, Facebook и Microsoft имеют уникальные модели распознавания лиц с глубоким обучением [8]. В последнее время идентификация на основе изображения лица изменилась на автоматическое распознавание путем определения возраста и пола в качестве исходных параметров. Sighthound Inc., например, тестировали алгоритм глубокой сверточной нейронной сети, способный распознавать не только возраст и пол, но даже эмоции [3]. Кроме того, была разработана надежная система для точного определения возраста и пола человека по одному изображению путем применения архитектуры глубокого многозадачного обучения [21].
3.2 Медицина
Цифровая обработка изображений, несомненно, является важной частью исследовательских областей, где может применяться метод глубокого обучения. Таким же образом, недавно тестировались клинические приложения. Например, сравнение между малослойным обучением и глубоким обучением в нейронных сетях привело к лучшей эффективности в прогнозировании заболеваний. Изображение, полученное с помощью магнитно-резонансной томографии (МРТ) [22] из головного мозга человека, было обработано, чтобы предсказать возможную болезнь Альцгеймера [3]. Не смотря на быстрый успех этой процедуры, некоторые проблемы должны быть серьезно рассмотрены для будущих применений. Одними из ограничений являются тренировка и зависимость от высокого качества. Объем, качество и сложность данных являются сложными аспектами, однако интеграция разнородных типов данных является потенциальным аспектом архитектуры глубокого обучения [17, 23].
Оптическая когерентная томография (ОКТ) является еще одним примером, где методы глубокого обучения показывают весомые результаты. Традиционно изображения обрабатываются путем ручной разработки сверточных матриц [12]. К сожалению, отсутствие учебных наборов ограничивает метод глубокого обучения. Тем не менее, в течение нескольких лет внедрение улучшенных тренировочных наборов будет эффективно предсказывать патологии сетчатки и уменьшать стоимость технологии ОКТ [24].
3.3 Биометрия
В 2009 году было применено приложение для автоматического распознавания речи, чтобы уменьшить частоту телефонных ошибок (Phone Error Rate — PER) с использованием двух разных архитектур сетей глубокого доверия [18]. В 2012 году метод CNN [25] был применен в рамках гибридной нейронной сети — скрытой модели маркова (Hybrid Neural Network — Hidden Markov Model — NN — HMM). В результате был достигнут PER на уровне 20,07%. Полученный PER лучше по сравнению с ранее применяемым 3-слойным методом базовой линии нейронной сети [26]. Смартфоны и разрешение их камер были протестированы для распознавания радужной оболочки. При использовании мобильных телефонов, разработанных различными компаниями, точность распознавания радужной оболочки может достигать до 87% эффективности [22,28].
С точки зрения безопасности, особенно контроля доступа; глубокое обучение используется в сочетании с биометрическими характеристиками. DL был использован для ускорения разработки и оптимизации устройств распознавания лиц FaceSentinel. По словам этого производителя, их устройства могут расширить процесс идентификации с одного-к-одному до одного-к-многим за девять месяцев [27]. Это усовершенствование движка могло бы занять 10 человеко-лет без внедрения DL. Что ускорило производство и запуск оборудования. Эти устройства используются в лондонском аэропорту Хитроу, а также могут использоваться для учета рабочего времени и посещаемости, и в банковском секторе [3, 29].
4. Обзор
Таблица 1 подытоживает несколько применений, реализованных в течение предыдущих лет относительно глубокого обучения. В основном упоминаются распознавание речи и обработка изображений. В этом обзоре рассматриваются только некоторые из большого списка применений.
Таблица 1. Применения глубокого обучения, 2003–2017 гг.
(Применение: 2003 — Иерархический байесовский вывод в зрительной коре; 2006 — Классификация цифр; 2006 — Глубокая сеть доверия для телефонного распознавания; 2012 — Распознавание речи из множественных источников; 2015 — Распознавание радужки глаза с помощью камер смартфонов; 2016 — Освоение игры Го глубокими нейронными сетями с поиском по дереву; 2017 — Модель сенсорного распознавания радужки).
4.1 Анализ публикаций за год
На рис. 1 приведено количество публикаций по глубокому обучению из базы данных ScienceDirect в год с 2006 по июнь 2017 года. Очевидно, что постепенное увеличение числа публикаций мог бы описать экспоненциальный рост.
На рис. 2 представлено общее количество публикаций по глубокому обучению в Springer в год с января 2006 года по июнь 2017 года. В 2016 году наблюдается внезапный рост публикаций, достигающий 706 публикаций, что доказывает, что глубокое обучение действительно в центре внимания современных исследований.
На рис. 3 показано количество публикаций на конференциях, в журналах и изданиях IEEE с января 2006 года по июнь 2017 года. Примечательно, что с 2015 года количество публикаций значительно увеличилось. Разница между 2016 и 2015 годами составляет более 200% прироста.
Рис. 1. Рост количества публикаций по глубокому обучению в базе данных Sciencedirect (январь 2006 г. — июнь 2017 г.)
Рис. 2. Рост количества публикаций по глубокому обучению из базы данных Springer. (январь 2006 г. — июнь 2017 г.)
Рис. 3. Рост публикаций в по глубокому обучению из базы данных IEEE. (январь 2006 г. — июнь 2017 г.)
5. Выводы
Глубокое обучение — действительно быстро растущее применение машинного обучения. Многочисленные приложения, описанные выше, доказывают его стремительное развитие всего за несколько лет. Использование этих алгоритмов в разных областях показывает его универсальность. Анализ публикаций, выполненный в этом исследовании, ясно демонстрирует актуальность этой технологии и дает четкую иллюстрацию роста глубокого обучения и тенденций в отношении будущих исследований в этой области.
Кроме того, важно отметить, что иерархия уровней и контроль в обучении являются ключевыми факторами для разработки успешного приложения в отношении глубокого обучения. Иерархия важна для соответствующей классификации данных, в то время как контроль учитывает важность самой базы данных как части процесса. Основная ценность глубокого обучения заключается в оптимизации существующих приложений в машинном обучении благодаря инновационности иерархической обработки. Глубокое обучение может обеспечить эффективные результаты при цифровой обработке изображений и распознавании речи. Снижение процента ошибок (от 10 до 20%) явно подтверждает улучшение по сравнению с существующими и проверенными методами.
В нынешнюю эпоху и в будущем глубокое обучение может стать полезным инструментом безопасности благодаря сочетанию распознавания лиц и речи. Помимо этого, цифровая обработка изображений является областью исследований, которая может применяться в множестве других областей. По этой причине и доказав истинную оптимизацию, глубокое обучение является современным и интересным предметом развития искусственного интеллекта.
Курс о Deep Learning на пальцах
Я все еще не до конца понял, как так получилось, но в прошлом году я слово за слово подписался прочитать курс по Deep Learning и вот, на удивление, прочитал. Обещал — выкладываю!
Курс не претендует на полноту, скорее это способ поиграться руками с основными областями, где deep learning устоялся как практический инструмент, и получить достаточную базу, чтобы свободно читать и понимать современные статьи.
Материалы курса были опробованы на студентах кафедры АФТИ Новосибирского Государственного Университета, поэтому есть шанс, что по ним действительно можно чему-то научиться.
Курс требует:
— Знания математики на уровне первого-второго курса университета: надо знать немного теории вероятностей, линейную алгебру, основы матанализа и анализ функций многих переменных. Если все это прошло мимо вас, вот все нужные курсы от MIT и Harvard. В них типично достаточно пройти первые две секции.
— Умения программировать на питоне.
В хорошем курсе должны быть доступны и лекции, и упражнения, и место, где можно задать по ним вопросы и обсудить. Здесь они собраны с миру по нитке:
— Лекции существуют как записи на Youtube.
— В качестве упражнений можно использовать задания великолепных Стенфордских курсов по DeepLearning (CS231n и CS224n), я ниже напишу какие конкретно.
— Обсуждать и спрашивать можно на ClosedCircles и ODS.ai.
Лекции и упражнения
Упражнение: секции «k-Nearest Neighbor» и «Softmax classifier» отсюда
По специфике задания могут помочь вот эти lecture notes.
Упражнение: секции «Two-Layer Neural Network» отсюда и «Fully-connected Neural Network» отсюда
Упражнение: секции «Convolutional Networks» и «PyTorch on CIFAR-10» отсюда
Упражнение: секция «word2vec» отсюда
Здесь хорошего готового задания я не нашел, но можно реализовать на PyTorch Char-RNN из знаменитого поста Andrej Karpathy и натравить на Шекспира.
Где обсуждать и задавать вопросы
Все вопросы по курсу можно задавать мне лично или обсуждать в кружочке #data на ClosedCircles.com (вот инвайт).
Кроме этого, задания можно обсуждать в канале #class_cs231n на ODS.ai, там помогут. Для этого придется получить туда инвайт самому, отправляйте заявки.
Ну и вообще, звоните-пишите, всегда рад.
Самая приятная секция — благодарности!
Прежде всего, огромное спасибо buriy, с которым мы готовили курс. Спасибо родной кафедре, которая дала вообще такую возможность.
Всем в тусовках на ODS.ai и ClosedCircles, кто помогал в подготовке, отвечал на вопросы, присылал фидбек, напоминал что надо все выложить, итд итп.
Наконец, всем кто следил за стримами на канале, задавал вопросы в реалтайме и вообще создавал ощущение, что я не со стеной разговариваю.
Vegas deep learning models что это
Deep learning (глубокое обучение) – это часть семейства методов машинного обучения (Machine Learning), основанная на искусственных нейронных сетях, с обучением представлений. Многие виды архитектур глубокого обучения, такие как полносвязные нейронные сети, глубокие сети доверия, рекуррентные нейронные сети, сверточные нейронные сети применяются во многих прикладных областях.
Глубина глубокого обучения
Машинное обучение подразумевает нахождение значимого представления входных данных с использованием обратной связи. Рисунок ниже иллюстрирует это определение, где новое представление — это пространство, с разделенными белыми и черными точками.
Изменение системы координат для нового представления
Глубокое обучение — один из методов машинного обучения и используется для нахождения нового представления данных. Но под глубиной глубокого обучения не имеется в виду глубокое понимание представлений. Йошуа Бенжио, один из пионеров искусственного интеллекта, в своей статье 2009 года высказал следующее: “Методы глубокого обучения нацелены на обучение иерархии признаков от высокого до низкого уровня. Автоматическое обучение признаков на разных уровнях абстракций позволяют системе изучать сложные функции, которые отображают входные данные в выходные, без какого-либо вмешательства человека” [1]. Иерархии, в данном случае, подразумевают слои нейронных сетей. Каждый параметр слоя определяет выявленный паттерн обучающей выборки, причем уровень абстракции последовательно снижается от слоя к слою. Рисунок ниже показывает, как изображение с цифрой представляется на каждом слое.
Глубокие представления в распознавании цифр
Обратное распространение ошибки: революция глубокого обучения
Множество ученых со всего мира внесли свой вклад в развитие искусственного интеллекта, среди которых особенно выделяются трое, названных “крестными отцами” глубокого обучения: Джеффри Хинтон, Ян Лекун, Йошуа Бенжио. Они поняли, что входной сигнал можно разложить на разные уровни или представления. Но для обучения этих самых представлений требуется особый метод. Им стал алгоритм обратного распространения ошибки.
Алгоритм обратного распространения ошибки (backpropagation) – это технология, которая вывела машинное обучение на новый уровень. Впервые он стал широко известен благодаря статье Хинтона в 1986 году [2]. Однако в то время алгоритм себя не зарекомендовал из-за причин:
В конце XX века были разработаны сверточные (convolutional) и рекурентные нейронные сети, включая LSTM (Долгая краткосрочная память, Long short-term memory). Но они не смогли тотчас же занять свою нишу из-за вышеперечисленных проблем. Например, на обучение сверточной сети для распознавания рукописных цифр уходило 3 дня [3], тогда как сегодня это занимает всего несколько минут, а то и меньше. А технология LSTM стала самым эффективным алгоритмом распознавания речи [4] только после 2013 года.
Терминология
Для обучения модели требуются данные. Чаще всего их разделяют на 3 категории:
В момент обучения может произойти утечка информации, то есть существует вероятность, что модель обучилась на валидационной выборке во время оценки. Для это и используется независимая тестовая выборка, которую модель не видела.
У модели есть свойства, которые задает человек перед обучением. Эти свойства называются гиперпараметрами, к ним относятся:
Параметры модели настраиваются в процессе обучения не человеком, а алгоритмом обратного распространения ошибки, к ним относятся:
Принцип действия глубокого обучения
Глубокое обучение, представляя входные данные в каждом слое, выдает предсказание. Оценкой результата занимается функция потерь, которая вычисляет расстояние между предсказанным значением и истинным. Тогда задачей обучения является нахождение параметров модели, при которых значение функции потерь минимально.
Процесс обучения можно подразделить на две стадии:
В прямом проходе осуществляется движение входного сигнала через все промежуточные слои до выходного слоя. Слои обладают функцией активацией, которая преобразует сигналы в нелинейную функцию, например, функция активации softmax выдает вероятность принадлежности классу, поэтому используется на последнем выходном слое.
Обратный проход подразумевает изменение весов в соответствие с выданными результатами функции потерь от выходного слоя через промежуточные до входного. Корректировка весов осуществляется через оптимизатор, который реализует алгоритм обратного распространения ошибки.
Принцип действия глубокого обучения
Сферы применения: где используется Deep Learning
Глубокое обучение может быть применено практически в любой области, где содержится большой набор данных (Big Data), например:
Deep Learning
Deep learning (глубокое обучение) — это вид машинного обучения с использованием многослойных нейронных сетей, которые самообучаются на большом наборе данных.
Основная логика
Искусственный интеллект с глубоким обучением сам находит алгоритм решения исходной задачи, учится на своих ошибках и после каждой итерации обучения дает более точный результат. Deep learning используют в компьютерном зрении (для извлечения информации из изображений), машинном переводе и распознавании человеческой речи на аудиозаписях.
Кратчайшая история
Первые компьютерные модели нейронных сетей появились в 1943 году. Американские ученые Уолтер Питтс и Уоррен Маккалок создали аналог нейронных сетей человеческого мозга и написали алгоритмы для имитации мыслительного процесса. Позднее исследователи изучали алгоритмы работы искусственных нейросетей, но у технологии были ограничения: для полноценной работы в те годы не хватало мощных компьютеров и объемы имеющихся данных были слишком малы.
В 1970-x появились первые графические процессоры – GPU. Компьютеры с этими компонентами обрабатывали графические данные в сотни раз быстрее, так как GPU специально были заточены только для этой задачи. В будущем это помогло нейронным сетям выиграть конкуренцию у других моделей искусственного интеллекта, например, машины опорных векторов, так как для обучения нейросети нужно быстро перемножить большое количество матриц, а GPU с этим справляются лучше всего.
Современный этап развития глубокого обучения наступил в начале 2010-х годов. Этому помогли рост производительности графических процессоров и появление сверточных нейронных сетей, при создании которых вдохновлялись устройством человеческого глаза. В 2012 году применение deep learning позволило снизить долю ошибок при распознавании объектов на изображениях в рамках проекта ImageNet до 16%. Сегодня нейросети справляются с подобными задачами с точностью до 94-99%, что превышает возможности человека.
Сегодня нейросети применяют и для анализа активности в человеческом мозге. В 2020 году исследователи использовали deep learning для поиска отделов височной доли мозга, отвечающих за распознавание образов у человека.
Machine Learning и Deep Learning
Освойте самую востребованную технологию искусственного интеллекта. Дополнительная скидка 5% по промокоду BLOG.
Как устроены многослойные нейронные сети
Функционально нейросети делят на слои — структуры нейронов с общей задачей.
Входной слой получает набор данных. В простейшем случае каждый нейрон отвечает за один параметр. Например, в нейросетях для прогнозирования цен номеров в отеле это будут название отеля, категория номера и дата заезда. Информацию по этим параметрам входной слой отдает на скрытые слои.
Скрытые слои производят вычисления на основе входящих параметров. В глубоком обучении у нейронных сетей несколько скрытых слоев. Это позволяет нейросети находить больше взаимосвязей во входных данных. Связи между нейронами имеют свой вес — долю значимости параметра среди всехданных. Например, в подсчете цен номеров большой вес будет иметь дата заезда, поскольку отели меняют цены в зависимости от спроса в конкретный день.
Выходной слой выводит результат вычислений, например, цены номеров в отелях.
В глубоком обучении используется больше одного скрытого слоя. Такие модели называют глубокими нейронными сетями (deep neural network). Например, в компьютерном зрении используют сверточные нейросети. В архитектуре таких нейросетей используют множество слоев, подбирая их количество под каждую задачу. Чем дальше информация со входного изображения продвигается по нейросети, тем более абстрактные детали находит нейросеть. Например, на первых слоях модель находит палочки и круги, из которых состоит любое изображение, а в конце сеть уже может найти хвосты и уши для распознавания животных на фотографиях.
Как обучают нейросети в deep learning
Глубокая нейросеть тренируется проводить точные вычисления на больших наборах данных. Например, для обучения расчету цен в отелях нужны массивы данных о ценах за предыдущие годы. Нейросеть будет находить закономерности в параметрах и с каждой итерацией будет прогнозировать цены в определенный день точнее.
В deep learning есть два основных способа тренировки нейросети: с учителем и без учителя. В первом случае нейросети задают эталонный результат вычислений. При ответах с ошибкой она перенастраивает свои параметры и проводит вычисления снова, пока ответ не приблизится к эталону. Пример – определение стоимости дома.
При обучении без учителя глубокая нейросеть сама классифицирует входящие данные и вычисляет эталонный результат. Пример – кластеризация пользователей сайта по разным группам.
Data Science с нуля
Освойте машинное и глубокое обучение и научитесь применять их для решения бизнес-задач. Дополнительная скидка 5% по промокоду BLOG.
Где применяется deep learning
Машинный перевод
В технологии нейронного машинного перевода (NMT) нейросети обучают на миллионах примеров пар фрагментов текста и их переводов. Глубокое обучение позволяет модели анализировать контекст употребления слов и грамматику. Один из самых известных примеров — GNMT, нейронный машинный перевод от Google.
Компьютерное зрение
В технологиях компьютерного зрения deep learning помогает распознавать объекты на изображениях. Для этого нейронные сети анализируют области на фото, находя в них закономерности, полученные при обучении. Например, компьютерное зрение используют в поисковиках: алгоритмы Яндекс и Google способны находить похожие на заданные фотографии. Также глубокое обучение применяют для распознавания лиц на камерах видеонаблюдения и для редактирования фотографий.
Синтез и распознавание речи
Благодаря глубокому обучению технологии обработки и синтеза речи стали очень точными. Обучение многослойных нейросетей позволяет компьютеру распознавать голос с учетом речевых особенностей: произношения, акцента, скорости речи, возраста говорящего. В синтезе речи, например, в голосовых помощниках Siri и Алиса, глубокое обучение позволяет объединять записанные фрагменты так, чтобы голос казался естественным.
Освойте востребованную профессию за 13 месяцев. На курсе вы изучите необходимый набор компетенций для уровня Junior.