Vx v0x axt что

Vx v0x axt что

Равноускоренным называют движение с постоянным ускорением. Простейшим примером такого движения является свободное падение тел, изучением которых занимался ещё Галилео Галилей. Скорость движения при этом не остаётся постоянной: в общем случае она меняется и по модулю, и по направлению. Описание данного движения значительно сложнее по сравнению с равномерным прямолинейном. Действия с числами здесь заменяют на действия с векторами, так как векторы содержат в себе информацию о направлений величин, характеризующих движение (о скорости, ускорений, перемещений).
Ускорение при равноускоренном движений показывает, на сколько изменяется скорость тела за каждую секунду движения:

Vx v0x axt что. a. Vx v0x axt что фото. Vx v0x axt что-a. картинка Vx v0x axt что. картинка a(1)

Где V0 – начальная скорость тела, а V скорость того же тела спустя некоторое время t.
Ускорение показывает изменение скорости за единицу времени.
Из определения ускорения следует, что мгновенная скорость тела при равноускоренном движении изменяется с течением времени по линейному закону:

Vx v0x axt что. v. Vx v0x axt что фото. Vx v0x axt что-v. картинка Vx v0x axt что. картинка v(2)

Эта формула позволяет по начальной скорости и ускорению тела вычислить его скорость в любой момент времени t. Между тем основная задача механики заключается в определении того, где будет находиться тело спустя заданное время. Для её решения необходимо знать перемещение, совершённое телом за это время. Перемещение можно найти, умножив среднюю скорость на время движения:

При равноускоренном движении средняя скорость равна полусумме начальной и конечной скоростей движения:

Vx v0x axt что. vs. Vx v0x axt что фото. Vx v0x axt что-vs. картинка Vx v0x axt что. картинка vs

Vx v0x axt что. s. Vx v0x axt что фото. Vx v0x axt что-s. картинка Vx v0x axt что. картинка s

Подставляя сюда выражения (2), получаем:

Именно это уравнение является обобщением формулы:s=vt на случай движения с постоянным ускорением.
Уравнения (1),(2),(3) – векторные. Действия с векторами отличаются от действий с числами, поэтому никакие числовые значения перемещения, скорости и ускорения в такие уравнения подставлять нельзя. Между тем любые расчёты требуют проведений операций именно с числами. Чтобы это стало возможным, необходимо от векторного способа описания движения перейти к координатному. При координатном описаний движения вместо векторов используют проекций на оси координат. Поскольку любой вектор характеризуется тремя проекциями на оси X,Y и Z, следовательно каждому вектору уравнению в общем случае будут соответствовать три уравнения в координатной форме. Для плоского (двухмерного) движения таких уравнений только два. Если же движение является прямолинейным, то для его описания достаточно одного уравнения в проекций на ось X(при условии, что эта ось направлена параллельно вектору скорости частицы). Тогда уравнения (2) и (3).например, можно записать следующим образом:

При координатном описаний движения, координота тела будет равна:

Шелкни мышкой по машине и управлять машиной стрелочками

Источник

Каталог файлов

КИНЕМАТИКА (ФОРМУЛЫ)

Закон сложения скоростей (для поступательного движения системы отсчета)

v1 = v12 + v2,
где v1 − скорость первого тела (например, относительно земли), v12 − скорость первого тела относительно второго тела (подвижной системы отсчета), v2 − скорость второго тела (относительно земли). Аналогичный вид имеют закон сложения перемещений
S1 = S12 + S2
и закон сложения ускорений
a1 = a12 + a2.
Эту формулу в виде
v12 = v1 − v2
называют формулой для относительной скорости двух тел.

Средняя скорость при неравномерном движении по прямой

Скорость и перемещение при равноускоренном движении по прямой

Свободное падение (vo = 0). Скорость и перемещение (ось y направлена вниз, ay = g)

Бросок вертикально вверх с начальной скоростью vo. Скорость и перемещение (ось y направлена вверх, voy = vo, ay = −g):

Бросок под углом к горизонту с начальной скоростью vo. Проекция скорости и перемещения (ось x направлена горизонтально, ось y − вертикально вверх):

Объем и масса (жидкости, газа), проходящие через сечение S струи за время Δt (уравнение расхода):

ΔV = SvΔt,
Δm = ρΔV = ρSvΔt,
где v − скорость струи, ρ − плотность (жидкости, газа).

Источник

Vx v0x axt что

Vx v0x axt что. Fragment22. Vx v0x axt что фото. Vx v0x axt что-Fragment22. картинка Vx v0x axt что. картинка Fragment22

Vx v0x axt что. Fragment11. Vx v0x axt что фото. Vx v0x axt что-Fragment11. картинка Vx v0x axt что. картинка Fragment11

Vx v0x axt что. Zagolovok1. Vx v0x axt что фото. Vx v0x axt что-Zagolovok1. картинка Vx v0x axt что. картинка Zagolovok1

Перемещение

Перемещение тела (материальной точки) – это вектор, соединяющий начальное положение тела с его последующим положением.

Существует большая разница между путем и перемещением. Путь может быть и по прямой, и по извилистой линии, может быть и круговым. Допустим, во всех этих случаях длина пути одинаковая. Очевидно, что расстояние между началом и концом пути будет разным. То есть тело может преодолеть путь длиной в 20 км и при этом переместиться от начальной точки всего на 2 км, на 20 метров или вообще не переместиться (если тело двигалось по кругу, то оно, пройдя круг, вернулось к исходной точке).

Путь – скалярная величина, то есть величина, не имеющая направления.

Перемещение – векторная величина, то есть величина, имеющая направление.

Как и путь, перемещение измеряется в метрах, километрах, сантиметрах и т.д.

Перемещение при прямолинейном равномерном движении.

Формула перемещения для прямолинейного равномерного движения:

→ →
s = v · t

где v – проекция скорости, t – время.

Но для расчета перемещения применяют формулу, в которую входят проекции векторов на ось:

sx = vxt

где vx – проекция скорости, t – время.

Перемещение тела при прямолинейном равноускоренном движении.

Формула 1:

v0x + vx
S = ———— · t
2

где t – время, v0x – проекция начальной скорости, vx – проекция скорости в конце промежутка времени t.

Формула 2:

Поскольку vx = v0x + axt, а S = sx, то формула 1 может иметь и такой вид:

axt 2
sx = v0xt + ——
2

Перемещение тела при прямолинейном равноускоренном движении без начальной скорости.

Если начальная скорость v0 равна нулю, то предыдущая формула закономерно обретает следующий вид:

at 2
s = ——
2

Источник

Определение координаты движущегося тела

Vx v0x axt что. opredelenie koordinaty dvizhuschegosya tela. Vx v0x axt что фото. Vx v0x axt что-opredelenie koordinaty dvizhuschegosya tela. картинка Vx v0x axt что. картинка opredelenie koordinaty dvizhuschegosya tela Vx v0x axt что. opredelenie koordinaty dvizhuschegosya tela. Vx v0x axt что фото. Vx v0x axt что-opredelenie koordinaty dvizhuschegosya tela. картинка Vx v0x axt что. картинка opredelenie koordinaty dvizhuschegosya tela

Как определить координаты движущегося тела? Для этого необходимо знать такие понятия, как механическое движение, пройденный путь, скорость, перемещение.

Механическое движение

При механическом движении происходит изменение положения тела в пространстве относительно других тел за промежуток времени. Оно бывает равномерным и неравномерным.

Равномерное движение

При равномерном движении тело за равные промежутки времени проходит одинаковые расстояния (т.е. движется с постоянной скоростью).

Путь, пройденный при равномерном движении равен: Sx=Vxt=x-xо

Следовательно, при равномерном движении координата тела изменяется по следующей зависимости:

Неравномерное движение

Неравномерное движение – движение, при котором тело за равные промежутки времени проходит неодинаковые расстояния (движется с непостоянной скоростью), то есть движется с ускорением.

Если тело движется неравномерно, то скорость тела в разные моменты отличается не только по величине, но и (или) по направлению. Средняя скорость тела при неравномерном движении определяется по формуле: V (ср)= S (весь)/t (весь)

Ускорение – величина, показывающая, как изменяется скорость за 1 секунду.

Vx v0x axt что. formula uskoreniya e1517785272270. Vx v0x axt что фото. Vx v0x axt что-formula uskoreniya e1517785272270. картинка Vx v0x axt что. картинка formula uskoreniya e1517785272270Рис. 2. Формула ускорения

Следовательно, скорость в любой момент времени можно найти следующим образом:

V=Vо+at

Если скорость с течением времени увеличивается, то a больше 0, если скорость с течением времени уменьшается, то a меньше 0.

Как найти путь при равноускоренном движении?

Vx v0x axt что. pryamolineynoe ravnouskorennoe dvizhenie e1517785289616. Vx v0x axt что фото. Vx v0x axt что-pryamolineynoe ravnouskorennoe dvizhenie e1517785289616. картинка Vx v0x axt что. картинка pryamolineynoe ravnouskorennoe dvizhenie e1517785289616Рис. 3. Прямолинейное равноускоренное движение

Пройденный путь численно равен площади под графиком. То есть Sx=(Vox+Vx)t/2

Скорость в любой момент времени равна Vx=Vox+axt, следовательно Sx=Voxt+axt2/2

Так как перемещение тела равно разности конечной и начальной координат (Sx=X-Xo), то координата в любой момент времени вычисляется по формуле X=Xo+Sx, или

Движение тела по вертикали

Если тело движется по вертикали, а не по горизонтали, то такое движение всегда является равноускоренным. Когда тело падает вниз, то падает оно всегда с одинаковым ускорением – ускорением свободного падения. Оно всегда одинаковое: g=9,8 м/кв.с.

При движении по вертикали формула скорости приобретает вид: Vy=Voy+gt,
где Vy и Voy – проекции начальной и конечной скоростей на ось OY.

Координату же можно рассчитать по формуле: Y=Yo+Voyt+gt2/2

Движение тела по окружности

При движении по окружности численное значение скорости может и не изменяться, но поскольку обязательно изменяется направление, то движение по окружности – это всегда равноускоренное движение.

Vx v0x axt что. lazyimg. Vx v0x axt что фото. Vx v0x axt что-lazyimg. картинка Vx v0x axt что. картинка lazyimg

Что мы узнали?

Тема «Определение координаты движущего тела», которую изучают в 9 классе, поможет ученикам систематизировать информацию о том, что движение может быть равномерным и неравномерным. Так же для того чтобы знать пройденный путь, нужно выбрать тело отсчета и использовать прибор для отсчета времени.

Источник

§ 6. Скорость прямолинейного равноускоренного движения. График скорости

Вам известно, что при прямолинейном равноускоренном движении проекцию вектора ускорения на ось X можно найти по формуле:

Vx v0x axt что. f26. Vx v0x axt что фото. Vx v0x axt что-f26. картинка Vx v0x axt что. картинка f26

Выразим из этой формулы проекцию vx вектора скорости v, которую имело движущееся тело к концу промежутка времени t, отсчитываемого от момента начала наблюдения, т. е. от t0 = 0:

Если в начальный момент тело покоилось, т. е. v0 = 0, то для этого случая последняя формула принимает вид:

Представим зависимость проекции вектора скорости от времени при равноускоренном движении в виде графика.

Из курса математики вам известна линейная функция у = kx + b, где х — аргумент, k — постоянный коэффициент, b — свободный член. Графиком этой функции является прямая.

Функция vx = v0x + axt (или, что то же самое, vx = axt + v0x) тоже линейная с аргументом t, постоянным коэффициентом ах и свободным членом v0x. Значит, графиком этой функции тоже должна быть прямая. Расположение этой линии по отношению к осям координат определяется значениями ах и v0x.

Построим, например, график зависимости от времени проекции вектора скорости разгоняющегося перед взлётом самолёта, который движется из состояния покоя прямолинейно с ускорением 1,5 м/с 2 в течение 40 с.

Сонаправим ось X со скоростью движения самолёта. Тогда проекции векторов скорости и ускорения будут положительны.

Для построения заданной прямой достаточно знать координаты (т. е. t и vx) двух любых её точек. Задав два произвольных значения t, по формуле vx = axt можно определить соответствующие значения vx. Например, при t0 = 0 v0x = 0; при t = 40 с vx = 1,5 м/с 2 • 40 с = 60 м/с. По координатам первой из найденных точек видно, что график зависимости скорости от времени пройдёт через начало координат (рис. 10).

Vx v0x axt что. 10. Vx v0x axt что фото. Vx v0x axt что-10. картинка Vx v0x axt что. картинка 10

Рис. 10. График функции vx = 1,5t(м/с)

Теперь построим аналогичный график для случая, когда начальная скорость не равна нулю (при том, что модуль скорости, как и в предыдущем примере, возрастает). Для этого воспользуемся таким примером.

В этом случае зависимость vx (t) описывается формулой vx = v0x + axt. Найдём по этой формуле координаты двух произвольных точек графика. Например, при t0 = 0 v0x = 10 м/с; при t = 3 с vx = 10 м/с + 1,4 м/с 2 • 3 с = 14,2 м/с.

График, построенный по этим точкам, представлен на рисунке 11. Он отсекает на оси vx отрезок, равный проекции вектора начальной скорости.

Vx v0x axt что. 11. Vx v0x axt что фото. Vx v0x axt что-11. картинка Vx v0x axt что. картинка 11

Рис. 11. График функции vx = 10 + 1,4t(м/с)

Построим теперь график зависимости проекции вектора скорости от времени, если начальная скорость не равна нулю, а модуль вектора скорости уменьшается с течением времени.

Допустим, водитель автомобиля, движущегося со скоростью 20 м/с (72 км/ч), нажимает на педаль тормоза. В результате автомобиль движется с ускорением 2 м/с 2 и через 10 с останавливается.

За начало отсчёта времени примем момент начала торможения, когда скорость автомобиля ещё была равна 20 м/с.

В этом случае нет необходимости рассчитывать значение проекции вектора скорости, поскольку координаты двух точек графика очевидны: при t0 = 0 v0x = 20 м/с; при t = 10 с vx = 0. Соответствующий график представлен на рисунке 12.

Vx v0x axt что. 12. Vx v0x axt что фото. Vx v0x axt что-12. картинка Vx v0x axt что. картинка 12

Поскольку скорость уменьшается по модулю, то график образует с положительным направлением оси t тупой угол.

Вопросы

Упражнение 6

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *