Как импортировать рандом в питоне

Модуль random: генерация псевдослучайных чисел в Python

Многим компьютерным приложениям необходимо генерировать случайные числа. Однако ни одно из них не генерирует действительно случайное число. Python, как и многие другие языки программирования, использует генератор псевдослучайных чисел. Генерация случайных чисел в Python основана на алгоритме Вихрь Мерсенна. Этот метод быстрый и потокобезопасный, но не подходит для криптографических целей.

random.getstate() — эта функция вместе с функцией setstate() помогает воспроизводить одни и те же случайные данные снова и снова. Функция getstate() возвращает внутреннее состояние генератора случайных чисел. Больше информации вы можете найти по ссылке.

random.setstate(state) — эта функция восстанавливает внутреннее состояние генератора.

Следующие функции предназначены для генерации случайных целых чисел:

random.randrange() − эта функция генерирует случайное целое число в пределах заданного диапазона чисел. Может принимать три параметра.

Параметры start и step являются необязательными. Их значения по умолчанию равны 0 и 1 соответственно. Шаг ( step ) определяет интервал между последовательными числами.

Примечание: помните, что выходные данные примеров в этой статье могут не совпадать, так как они генерируются случайным образом.

Следующие функции работают со случайными числами с плавающей запятой:

random.random() — эта функция генерирует случайное число с плавающей запятой в диапазоне от 0.0 до 1.0.

Следующие функции работают c последовательностями, а именно — со строками, списками или кортежами:

random.choices() − эта функция случайным образом выбирает несколько элементов из списка. Первый параметр этой функции — последовательность, а второй — количество элементов, которые нужно вернуть. Возвращает список, в котором может повторяться несколько раз один и тот же элемент.

random.shuffle() — эта функция переупорядочивает (перемешивает) элементы в изменяемой (mutable) последовательности и размещает их случайным образом.

random.sample(sequence, n) — эта функция возвращает список случайно выбранных элементов из последовательности. Результирующий список содержит только уникальные элементы.

Более подробную информацию о функциях модуля random вы можете найти в документации.

Источник

Random Python

Каждый человек ежедневно сталкивается со случайностью. Википедия нам говорит: случайность — это результат маловероятного или непредсказуемого события. Непредсказуемого. Стоит отметить, что, чем сложнее система, тем ниже возможность прогнозировать (предсказывать) её будущие состояния. Мир сложен и именно по-этому случайность встречается столь часто. Можно сказать, что случайностью мы называем все события, которые не можем предугадать. Таким образом, разговор о случайном – это разговор о нехватке информации. Но эту нехватку человек научился использовать себе на пользу. К примеру, случайные величина широко применяются в криптографии.

В языке Python есть удобные инструменты для работы со случайными значениями. Речь о модуле стандартной библиотеки под названием random (и не только о нём). Давайте знакомиться!

Как использовать модуль random в Python

Для начала модуль надо импортировать.

Python функции модуля random

Случайное целое число — randint() функция random

Самое частое применение данного модуля — генерация случайных чисел. Самая популярная функция для этого — randint().

Она возвращает случайное целое число, лежащее в диапазоне, указанном в параметрах функции. Оба аргумента обязательны и должны быть целыми числами.

Генерация случайного целого числа — randrange()

Функция randrange() используется для генерации случайного целого числа в пределах заданного диапазона. Отличие от randint() заключается в том, что здесь есть третий параметр – шаг, по умолчанию равный единице.

Выбор случайного элемента из списка choice()

Вы играли в детстве в «считалочки»? Эники-беники… Вот этим и занимается random.choice(): функция возвращает один случайный элемент последовательности.

Функция sample()

random.sample() применяется, когда надо выбрать несколько элементов из заданной коллекции. Она возвращает список уникальных элементов, выбранных из исходной последовательности. Количество элементов, которое вернёт функция, задаётся аргументом k.

Случайные элементы из списка — choices()

random.choices делает то же, что и random.sample(), но элементы, которые она возвращает, могут быть не уникальными.

Генератор псевдослучайных чисел — seed()

Метод seed() используется для инициализации генератора псевдослучайных чисел в Python. Вот что это означает: для генерации псевдослучайных чисел необходимо какое-то исходное число и именно это число можно установить данным методом. Если значение seed не установлено, тогда система будет отталкиваться от текущего времени.

Перемешивание данных — shuffle()

Метод random.shuffle() применяется для расстановки элементов последовательности в случайном порядке. Представьте коробку в которой лежат какие-то предметы. Встряхните её 🙂

Генерации числа с плавающей запятой — uniform()

random.uniform() похожа на randint(), но применяется для генерации числа с плавающей запятой в указанном диапазоне.

Функция triangular()

Функция random.triangular() позволяет управлять вероятностью – она возвращает случайное число с плавающей запятой, которое соответствует заданному диапазону, а также уточняющему значению mode. Этот параметр дает возможность взвешивать возможный результат ближе к одному из двух других значений параметров. По умолчанию он находится посередине диапазона.

Криптографическая зашита генератора случайных данных

Случайные числа, полученные при помощи модуля random в Питоне, не являются криптографически устойчивыми. Это означает, что криптоанализ позволяет предсказать какое число будет сгенерировано следующим. Попробуем исправить ситуацию.

Его зачастую следует использовать вместо генератора псевдослучайных чисел по умолчанию в модуле random, который предназначен для моделирования и симуляции, а не безопасности или криптографии.

Numpy.random — Генератор псевдослучайных чисел

Самый простой способ задать массив со случайными элементами — использовать функцию sample (или random, или random_sample, или ranf — это всё одна и та же функция).

Без аргументов возвращает просто число в промежутке [0, 1), с одним целым числом — одномерный массив, с кортежем — массив с размерами, указанными в кортеже (все числа — из промежутка [0, 1)).

Генерация случайного n-мерного массива вещественных чисел

numpy.random.rand()применяется для генерации массива случайных вещественных чисел в пределах заданного диапазона.

Также можно генерировать числа согласно различным распределениям (Гаусса, Парето и другие). Чаще всего нужно равномерное распределение, которое можно получить с помощь функции uniform.

Для начала необходимо установить Numpy.

Генерация случайного n-мерного массива целых чисел

С помощью функции randint или random_integers можно создать массив из целых чисел. Аргументы: low, high, size: от какого, до какого числа (randint не включает в себя это число, а random_integers включает), и size — размеры массива.

Выбор случайного элемента из массива чисел или последовательности

Функция NumPy random.choice() используется для получения случайных выборок одномерного массива, который возвращается как случайные выборки массива NumPy. Эта функция генерирует случайные выборки, которые обычно используются в статистике данных, анализе данных, полях, связанных с данными, а также может использоваться в машинном обучении, байесовской статистике и т. д.

Генерация случайных универсальных уникальных ID

Универсальные уникальные идентификаторы, также известные как UUID, — это 128-битные числа, используемые для однозначной идентификации информации в компьютерных системах. UUID могут использоваться для обозначения широкого спектра элементов, включая документы, объекты, сеансы, токены, сущности и т. Д. Их также можно использовать в качестве ключей базы данных.

Эта библиотека генерирует уникальные идентификаторы на основе системного времени и сетевого адреса компьютера. Объект UUID неизменяем и содержит некоторые функции для создания различных уникальных идентификаторов.

UUID состоит из пяти компонентов, каждый из которых имеет фиксированную длину. Символ дефиса разделяет каждый компонент. Мы можем представить UUID в формате «8-4-4-4-12», где каждая из цифр представляет длину в шестнадцатеричном формате.

UUID Python, сгенерированный с помощью функции uuid4(), создается с использованием истинно случайного или псевдослучайного генератора. Поэтому вероятность повторения двух гуидов невелика. Когда UUID необходимо сгенерировать на отдельных машинах или мы хотим сгенерировать безопасные UUID, используйте UUID4 (). Он также используется для генерации криптографически безопасных случайных чисел.

Источник

Модуль random. Генерация случайных чисел

Как импортировать рандом в питоне. oj 1080x720 6. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-oj 1080x720 6. картинка Как импортировать рандом в питоне. картинка oj 1080x720 6

В процессе программирования на Python может понадобиться случайное число. О том, как создать собственный простейший генератор псевдослучайных чисел и пойдет разговор в этой статье. Будут рассмотрены некоторые популярные методы и функции, которые включены в модуль random для Python 3 и позволяют получать значения случайным образом (randomly).

В качестве лирического отступления следует сказать, что, согласно специфике внутреннего состояния генератора, модуль для Python под названием random позволяет сгенерировать не случайный, а псевдослучайный элемент, то есть значения и их последовательности формируются на основе формулы. Раз последовательность зависит от нескольких параметров, она не является случайной в полном смысле этого слова. Если нужна истинная случайность, генерация может основываться, к примеру, на принципах квантовой механики, однако на практике это слишком дорого и сложно, да и не всегда экономически целесообразно, ведь для многих задач программирования вполне подойдут и псевдослучайные генераторы (если речь идет не про онлайн-казино). Вдобавок к этому, случайность (randomness) — вещь капризная, поэтому, как тут не вспомнить прекрасное высказывание американского математика Роберта Кавью:

Как импортировать рандом в питоне. Screenshot 1 3. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 1 3. картинка Как импортировать рандом в питоне. картинка Screenshot 1 3

Также на ум приходит еще одно интересное высказывание, но уже от выдуманного персонажа и с некоторым уклоном в философию:

Как импортировать рандом в питоне. Screenshot 2. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 2. картинка Как импортировать рандом в питоне. картинка Screenshot 2

Применение random в Python

В языке программирования «Пайтон» модуль random позволяет реализовывать генератор псевдослучайных чисел для разных распределений, куда входят как целые (integers), так и вещественные числа, то есть числа с плавающей запятой.

Общий список методов, поддерживаемых модулем random, можно посмотреть в таблице ниже. Тут стоит обратить внимание, что возврат значений может осуществляться на основе разных распределений (распределение Парето, распределение Вейбулла и т. д.), выбор которых зависит от области применения генератора случайных чисел (статистика, теория вероятности).

Как импортировать рандом в питоне. Screenshot 3 3. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 3 3. картинка Как импортировать рандом в питоне. картинка Screenshot 3 3

Но мы не будем углубляться в распределения, а рассмотрим самые простые методы. А так как разглядывать их в таблице совершенно неинтересно, давайте попрактикуемся и выясним, как может быть использован тот или иной метод в деле.

random.random

У модуля random есть одноименный метод-тезка — функция random. Она возвращает случайное число в диапазоне 0 — 1.0:

print(«Выводим случайное число с помощью random.random():»)

Как импортировать рандом в питоне. Screenshot 4 3. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 4 3. картинка Как импортировать рандом в питоне. картинка Screenshot 4 3

Если вы скопируете этот простейший код себе (можно использовать любой онлайн-компилятор), вы получите другое число.

Также вывести можно не одно, а, к примеру, три (three) числа (используется for i in range), причем прекрасным решением будет ограничить вывод до двух знаков после запятой (за это отвечает ‘%.2f’):

print(«Выводим 3 случайных числа; не более 2 знаков после запятой:»)

print([‘%.2f’ % random.random() for i in range(3)])

Как импортировать рандом в питоне. Screenshot 5 2. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 5 2. картинка Как импортировать рандом в питоне. картинка Screenshot 5 2

random.seed

Метод seed может показаться более сложным для понимания. Фишка в том, что, как уже было сказано выше, используется генератор псевдослучайных чисел, то есть выдача этих чисел происходит в соответствии с алгоритмом. Алгоритм вычисляет значение на основе другого числа, но это число берется не с потолка — оно вычисляется на основании текущего системного времени. В результате, если вы будете пробовать на своем компьютере один из кодов, рассмотренных выше, вы будете получать каждый раз новые числа.

Если же задействовать seed с одним и тем же параметром, то вычисление будет производиться на основании этого параметра. Итог — на выходе будут получаться одинаковые «случайные» значения. Возьмем для примера параметр 5 и сделаем так, чтобы метод отработал дважды:

Как импортировать рандом в питоне. Screenshot 6 3. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 6 3. картинка Как импортировать рандом в питоне. картинка Screenshot 6 3

random.uniform

С uniform все проще: возвращается псевдослучайное вещественное число, находящееся в определенном диапазоне, который указывается разработчиком:

print(«Находим число с плавающей точкой в заданном диапазоне:»)

Как импортировать рандом в питоне. Screenshot 7 2. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 7 2. картинка Как импортировать рандом в питоне. картинка Screenshot 7 2

random.randint

Randint в Python тоже позволяет вернуть псевдослучайное число в определенном диапазоне, но тут уже речь идет о целом значении (int, integer):

print(«Используем randint для генерации целого числа int из диапазона:»)

Как импортировать рандом в питоне. Screenshot 8 1. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 8 1. картинка Как импортировать рандом в питоне. картинка Screenshot 8 1

random.randrange

Следующий метод, называемый randrange, похож на предыдущий randint, но тут, кроме диапазона целых значений int, можно добавить еще и шаг выборки (в качестве третьего параметра):

print(«Генерируем случайное целое число в заданном диапазоне с шагом»)

print(random.randrange(10, 100, 2))

Судя по результату ниже и в соответствии с выбранным диапазоном от 10 до 100, установив шаг 2, мы будем получать лишь четные значения:

Как импортировать рандом в питоне. Screenshot 9 1. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 9 1. картинка Как импортировать рандом в питоне. картинка Screenshot 9 1

random.choice

Применение choice позволяет вернуть элемент из какой-нибудь последовательности — это может быть список, строка, кортеж.

И это уже интереснее, т. к. напрашивается аналогия с броском игрального кубика:

print(«Выборка одного элемента из списка с помощью choice:»)

Как импортировать рандом в питоне. Screenshot 10 2. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 10 2. картинка Как импортировать рандом в питоне. картинка Screenshot 10 2

Проверьте, повезет ли так и вам. Но вообще, перечень может состоять из других цифр и даже слов.

Сыграйте в игру и попробуйте погадать, какой язык программирования вам лучше учить в Otus:

print(«Какой язык программирования будешь учить?»)

Sample и choices

Начиная с Python 3.6, появился метод choices. Его отличие в том, что он позволяет сделать выборку нескольких элементов из последовательности, а вот сколько именно будет значений, можно указать. В отличие от схожего метода sample, в choices возможно получение одинаковых цифр.

Вернемся к нашему виртуальному кубику. Вот работа sample:

print («Выборка двух случайных значений:»)

Как импортировать рандом в питоне. Screenshot 11 1. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 11 1. картинка Как импортировать рандом в питоне. картинка Screenshot 11 1

Все бы ничего, но этот метод будет постоянно выводить 2 разных значения. Если же мы захотим сымитировать бросок двух игральных кубиков, код придется менять, ведь в реальной жизни выкинуть дубль все-таки можно. Но зачем менять код, если есть choices? Он обеспечит вывод двух случайных значения из заданного диапазона, причем они могут повторяться. Это уже максимально приближено к реальному броску двух кубиков, причем профит достигается и за счет того, что объем кода не увеличивается. Ради интереса мы его даже уменьшили — оптимизировали (List превратился в l, да и лишний текст выкинули):

Кстати, вот и дубль — результат равен [6, 6], причем всего лишь с 5-й попытки (можете поверить на слово):

Как импортировать рандом в питоне. Screenshot 12. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 12. картинка Как импортировать рандом в питоне. картинка Screenshot 12

Правда, тут нюанс: пришлось сменить онлайн-компилятор, так как на предыдущем компиляторе Python версии 3.6 не поддерживался.

random.shuffle

Функция с интересным названием shuffle может перемешивать последовательность, меняя местами значения (она не подходит для неизменяемых объектов). Здесь важна именно последовательность выпадения определенных значений, как в лото.

print («Крутим барабан и достаем шары наугад: «, list)

Как импортировать рандом в питоне. Screenshot 13. Как импортировать рандом в питоне фото. Как импортировать рандом в питоне-Screenshot 13. картинка Как импортировать рандом в питоне. картинка Screenshot 13

Остается добавить, что английское слово shuffle означает «тасовать, перемешивать». Как тут не вспомнить картежного шулера или лопату-шуфлю для перемешивания бетонного раствора. Но это так, для общего развития.

Источник

Рандом (random) в Python — как генерировать случайные числа

С лучайные числа применяются в программировании в разных случаях, например, для моделирования процессов и в видеоиграх. Для начала разберёмся, какую последовательность можно назвать случайной.

Случайной последовательностью называют набор элементов, полученных таким образом, что любой элемент их этого набора никак не связан ни с каким другим элементом. При этом в программировании обычно последовательность не является строго случайной — в ней для генерации следующего элемента используется предыдущий.

Как работают случайные числа

Полностью случайные числа генерируются истинным генератором случайных чисел (TRNG). Их можно получить, например, бросанием кубика или доставанием шаров из урны. Так как подобных устройств нет в компьютере, то в нем можно получить только «псевдослучайные» числа.

В Python, как и во всех остальных языках программирования, используется генератор псевдослучайных чисел, который выдает как будто случайные, но воспроизводимые числа.

Чтобы понять, как работают генераторы псевдослучайных чисел, рассмотрим работу одного из первых подобных генераторов. Его алгоритм работы был разработан Нейманом. В нем первое число возводят в квадрат, а потом из полученного результата берут средние цифры. Например, первое число 281, возводим его в квадрат, получаем 78961 и берем три цифры, находящиеся в середине – 896. После этого для генерации следующего числа используем 896.

Модуль random

👉 Как использовать: чтобы начать использовать встроенные генераторы случайных чисел, нужно сначала подключить модуль рандом:

После этого можно вызывать методы модуля random :

В модуле random существуют методы для генерации целых чисел, с плавающей точкой, для работы с последовательностями. Кроме этого существуют функции для управления генератором и генерации различных последовательностей. Рассмотрим основные из этих методов.

Случайные целые числа (int)

Перечислим основные функции, которые есть в модуле random для выдачи случайных целых чисел.

randint Функция randint(a, b) получает на вход два целых числа и возвращает случайное значение из диапазона [a, b] (a и b входят в этот диапазон).

import random random_number = random.randint(0, 125) print(random_number) > 113

randrange В функцию randrange(start, stop[, step]) передают три целых числа:

На выходе функция выдает случайное число в заданном диапазоне.

import random random_number = random.randrange(1, 100, 2) print(random_number) > 43

Случайные вещественные числа (float)

Перечислим функции, которые выдают вещественные числа.

random Функция random() выдает вещественные числа, в диапазоне [0.0, 1.0) (включая 0.0, но не включая 1.0).

import random random_number = random.uniform(7.3, 10.5) print(random_number) > 10.320165816501492

Случайные элементы из последовательности

В модуле random языка Python есть несколько функций, которые можно применять для работы с последовательностями.

choice С помощью функции choice(seq) можно выбрать один элемент из набора данных. В качестве единственного аргумента в функцию передаётся последовательность. Если последовательность будет пустой (то есть в ней не будет ни одного элемента), получим ошибку «IndexError».

import random seq = [10, 11, 12, 13, 14, 15] random_element = random.choice(seq) print(random_element) > 12

import random seq = [«Cappuccino», «Latte», «Espresso», «Americano»] random.shuffle(seq) print(seq) > [‘Espresso’, ‘Americano’, ‘Latte’, ‘Cappuccino’]

На выходе получаем k уникальных случайных элементов из последовательности.

Если в исходной последовательности есть неуникальные (повторяющиеся) элементы, то каждый их них может появиться в новом списке.

Управление генератором

Генерация чисел в Python не совсем случайна и зависит от состояния генератора случайных чисел. Рассмотрим функции, с помощью которых можно управлять состоянием этого генератора.

getstate Метод getstate() модуля random возвращает объект, в котором записано текущим состояние генератора случайных чисел. Его можно использовать для восстановления состояния генератора. Эта функция не имеет параметров.

import random state = random.getstate() # сохраняем текущее состояние генератора random_number_1 = random.random() # получаем случайное число print(random_number_1) # > 0.42164837822065193 # первое случайное число random_number_2 = random.random() print(random_number_2) # > 0.2486825504535808 # второе случайное число random.setstate(state) # восстанавливаем состояние генератора random_number_3 = random.random() # снова генерируем число print(random_number_3) # > 0.42164837822065193 # новое число равное первому, сгенерированному с тем же состояние генератора

seed Генератору случайных чисел нужно число, основываясь на котором он сможет начать генерировать случайные значения.

Вероятностное распределение

В теории вероятностей важную роль играет понятие распределение вероятностей. Оно показывает с какой вероятность может наступить каждое из возможных событий. С его помощью можно моделировать как наступление дискретных событий (например, бросание монеты, количество телефонных разговоров за неделю, количество пассажиров в автобусе), так и непрерывных (например, длительность разговора, количество осадков за год, расход электричества за месяц).

Для наглядности рассмотрим самое распространенное нормальное распределение вероятностей. На рисунке ниже приведена кривая нормального распределения.

В модуле random существуют функции, которые позволяют использовать различные методы вероятностных распределений:

Best practices

Приведем несколько примеров использования случайных чисел.

Пример #1 — случайная задержка (random sleep)

Иногда необходимо сделать так, чтобы программа работала с задержками. Например, это актуально при парсинге сайта (при частых запросах некоторые сайты могут вас банить).

import random import time page_list = [«site.ru/page1», «site.ru/page2», «site.ru/page3»] for page in page_list: # # some actions # time.sleep(random.randint(1, 3)) # задержка от 1 до 3 секунд

💭 Для имитации действий человека можно использовать random.uniform(1, 3) — это добавит случайные миллисекунды к вашим задержкам.

Пример #2 — выбор случайного элемента из списка (с учетом веса)

Дано: веб-сайт. В базе данных 4 баннера, к каждому баннеру указан вес (приоритет к показу).

Необходимо рандомно показывать на сайте 1 баннер, в зависимости от его веса.

Пример #3 — случайный пароль

С помощью генератора случайных чисел можно создавать пароли. Например, сгенерировать стойкий пароль можно так:

import random import string pwd_length = 0 while pwd_length Укажите длину пароля (от 12 символов): 12 > JFyc;6-ICxuQ

В данном примере будет сгенерирован пароль, содержащий минимум 12 символов, среди которых точно будет маленькая буква, большая буква, цифра и символ.

Методы модуля random позволяют получить случайные данные с использованием Mersenne Twister. Однако имейте в виду, что данный способ не является криптографически безопасным (для генерирования паролей есть более надежные варианты).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *