ΠΠ°ΠΊ ΠΈΡΠΊΠ°ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ: ΡΠ΅ΠΎΡΠΈΡ, ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ
ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΈΠ· ΡΡΠΎΠΊΠΎΠ² Π°Π»Π³Π΅Π±ΡΡ. ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ Π΄Π°Π΅Ρ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°ΠΌΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π²ΡΡΠ²ΠΈΠΌ ΡΠ²ΡΠ·Ρ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΡΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Ρ.
Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ
ΠΠ΅ΡΠ΅Π΄ Π·Π°ΠΏΠΈΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΎΡΠΈ Π Ρ Ρ ΠΈΡ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ. ΠΠΎΠΏΡΡΡΠΈΠΌ, ΡΡΠΎ Π·Π°Π΄Π°Π½Π° Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π Ρ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ β ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΠ³Π΄Π° Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°.
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ± ΡΠ³Π»ΠΎΠ²ΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ΅ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ
ΠΡΠ²Π΅Ρ: Π 1 ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, Π° Π 2 Π½Π΅Ρ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π·Π°Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΊ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π°ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ
Π’Π°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΠ΄ΠΎΠ±Π½ΡΡ Π·Π°ΠΏΠΈΡΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ Π² Π΄ΡΡΠ³ΠΎΠΌ Π²ΠΈΠ΄Π΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° y = k Β· x + b Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π°ΠΏΡΠ°Π²Π»ΡΡΡΠ΅Π³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΡΡΠΌΠΎΠΉ ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ Π½Π°ΡΡΠΈΡΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π΄ΡΡΠ³ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΡΡΠ°Π»ΠΎ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
ΠΡΡΠΈΡΠ»ΠΈΠΌ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ. ΠΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°:
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ Π²ΠΈΠ΄Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π·Π°ΠΏΠΈΡΠ΅ΠΌ:
Π Π΅ΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π΄Π°Π½Π½ΠΎΠΉ.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΅ΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Ρ, ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°:
ΠΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ Π²ΠΈΠ΄Ρ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ:
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Π²ΠΈΠ΄Π° x = x 1 + a x Β· Ξ» y = y 1 + a y Β· Ξ» ΠΊ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡΡ ΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΎΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΠΊ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ· Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ:
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρβ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΡΡΠΌΠΎΠΉ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ y = kx + b. ΠΠ½ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΡΠ΅ΡΡΡ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΡΡΡ 0Ρ . ΠΡΠΎΡ ΡΠ³ΠΎΠ» ΠΎΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ 0Ρ Π΄ΠΎ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡΠΈΠ² Ρ ΠΎΠ΄Π° ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ ΠΈ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 180 Π³ΡΠ°Π΄ΡΡΠΎΠ².
ΠΠ»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠΏΠΎΡΡΠ΅Π±Π»ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΈΠΉ ΡΠΈΠΌΠ²ΠΎΠ» k. Π, ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠΎΠ³Π΄Π° ΠΏΡΡΠΌΠ°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΎΡΠΈ 0Ρ ΠΈΠ»ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π΅ΠΉ, ΡΠΎ ΡΠ³ΠΎΠ» Π΅Π΅ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΡΠ°ΡΡΠ΅Π½ΠΈΠ²Π°ΡΡ, ΠΊΠ°ΠΊ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ.
ΠΠΎΠ³Π΄Π° ΠΏΡΡΠΌΠ°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΎΡΠΈ 0Ρ, ΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΈ ΠΏΡΠΈΠ½ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ.
ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ ΡΠΎΡΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β ΠΎΠ± ΡΠ±ΡΠ²Π°Π½ΠΈΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ ΡΠ°ΠΊ ΠΆΠ΅ Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΡΡΠΌΠΎΠΉ:
Π’ΠΎΠ³Π΄Π°, Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π²ΡΠ΅ΠΌΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ M1Π M2 Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠ°Π½Π³Π΅Π½Ρ:
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ (ΠΈ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ)!
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ. Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ Ρ Π²Π°ΠΌΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π΄Π°ΡΠΈ ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ Π²ΠΊΠ»ΡΡΡΠ½Π½ΡΠ΅ Π² ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠΎ Π·Π°Π΄Π°Π½ΠΈΡ Π½Π°:
β ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ½Π° ΠΏΡΠΎΡ
ΠΎΠ΄ΠΈΡ;
β ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΠΈΠ»ΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π²ΡΡ
ΠΏΡΡΠΌΡΡ
Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π°Π±ΡΡΠΈΡΡΠ° ΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ Π±ΡΠ»ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π² ΠΏΡΠΎΡΠ»ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ±ΡΠΈΠΊΠΈ. Π Π½Π΅ΠΉ ΠΌΡ ΡΠΆΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°Π΄Π°Ρ ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ. Π§ΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ Π΄Π»Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π·Π°Π΄Π°Ρ? ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΎΡΠΈΠΈ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
Π³Π΄Π΅ k β ΡΡΠΎ ΠΈ Π΅ΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ.
Π‘Π»Π΅Π΄ΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ! Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ ΡΠ°Π²Π΅Π½ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠΎ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΡΡΡ ΠΎΡ .
ΠΠ½ Π»Π΅ΠΆΠΈΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 180 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π’ΠΎ Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ ΠΌΡ ΠΏΡΠΈΠ²Π΅Π΄ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΊ Π²ΠΈΠ΄Ρ y = kx + b, ΡΠΎ Π΄Π°Π»Π΅Π΅ Π²ΡΠ΅Π³Π΄Π° ΡΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k (ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ).
Π’Π°ΠΊ ΠΆΠ΅, Π΅ΡΠ»ΠΈ ΠΌΡ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ, ΡΠΎ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ Π½Π°ΠΉΠ΄ΡΠΌ Π΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
Π‘Π»Π΅Π΄ΡΡΡΠΈΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ! Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ. Π€ΠΎΡΠΌΡΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π΄Π°ΡΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠ°ΠΌ ΠΈΠ· ΠΎΡΠΊΡΡΡΠΎΠ³ΠΎ Π±Π°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ):
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (β6;0) ΠΈ (0;6).
Π Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ ΡΠ°ΠΌΡΠΉ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΏΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΡ ΠΎΡ ΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ½ ΡΠ°Π²Π΅Π½ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΡΡΠΌΠΈ ΠΎΡ ΠΈ ΠΎΡ:
Π’Π°Π½Π³Π΅Π½ΡΠΎΠΌ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ:
*ΠΠ±Π° ΠΊΠ°ΡΠ΅ΡΠ° ΡΠ°Π²Π½Ρ ΡΠ΅ΡΡΠΈ (ΡΡΠΎ ΠΈΡ Π΄Π»ΠΈΠ½Ρ).
ΠΠΎΠ½Π΅ΡΠ½ΠΎ, Π΄Π°Π½Π½ΡΡ Π·Π°Π΄Π°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ. ΠΠΎ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (5;0) ΠΈ (0;5).
Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ°ΡΠΈ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (5;0) ΠΈ (0;5). ΠΠ½Π°ΡΠΈΡ,
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k = β 1.
ΠΡΡΠΌΠ°Ρ a ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;6) ΠΈ (8;0). ΠΡΡΠΌΠ°Ρ b ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;10) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΏΡΡΠΌΠΎΠΉ a. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ b Ρ ΠΎΡΡΡ ΠΎx.
Π Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ a, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π΄Π»Ρ Π½Π΅Ρ. Π£ ΠΏΡΡΠΌΠΎΠΉ b ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΎΠΉ ΠΆΠ΅, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ. ΠΠ°Π»Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ b. Π Π·Π°ΡΠ΅ΠΌ, ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y = 0, Π½Π°ΠΉΡΠΈ Π°Π±ΡΡΠΈΡΡΡ. ΠΠ!
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΏΡΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ².
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠΌΠΈ (ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ) ΠΏΡΡΠΌΡΠΌΠΈ ΠΎ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ, Π° ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½ ΡΠ°Π²Π½Ρ.
ΠΡΠΊΠΎΠΌΠ°Ρ Π°Π±ΡΡΠΈΡΡΠ° ΡΠ°Π²Π½Π° 40/3.
ΠΡΡΠΌΠ°Ρ a ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;8) ΠΈ (β12;0). ΠΡΡΠΌΠ°Ρ b ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0; β12) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΏΡΡΠΌΠΎΠΉ a. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ b Ρ ΠΎΡΡΡ ΠΎx.
ΠΠ»Ρ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΡΠ°ΠΌΡΠΉ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΏΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². ΠΠΎ ΠΌΡ ΡΠ΅ΡΠΈΠΌ Π΅Ρ Π΄ΡΡΠ³ΠΈΠΌ ΠΏΡΡΡΠΌ.
ΠΠ°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΡΠΎΡΠΊΠΈ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΡΠΌΠ°Ρ Π°. ΠΠΎΠΆΠ΅ΠΌ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (0;8) ΠΈ (β12;0). ΠΠ½Π°ΡΠΈΡ,
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ k = 2/3.
*Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΡΠ΅Π· ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌΠΈ 8 ΠΈ 12.
ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°Π²Π½Ρ. ΠΠ½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ (0;-12) ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ°ΠΉΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ b ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π°Π±ΡΡΠΈΡΡΡ ΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΡΠΌΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
Π’Π΅ΠΏΠ΅ΡΡ ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΡΠΊΠΎΠΌΡΡ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Ρ ΠΎΡΡΡ ΠΎΡ , Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Ρ = 0:
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠΈ ΠΎy ΠΈ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Π(10;12) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠΎΡΠΊΡ Π(10;24).
ΠΠ°ΠΉΠ΄ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;0) ΠΈ (10;24).
Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ°ΡΠΈ ΡΠΎΡΠΊΠΈ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (0;0) ΠΈ (10;24). ΠΠ½Π°ΡΠΈΡ,
Π£Π³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΡΠ°Π²Π½Ρ. ΠΠ½Π°ΡΠΈΡ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Π(10;12) ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ b Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π(10;12):
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Ρ ΠΎΡΡΡ ΠΎΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ = 0:
*Π‘Π°ΠΌΡΠΉ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° ΡΠ΄Π²ΠΈΠ³Π°Π΅ΠΌ Π΄Π°Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ Π²Π½ΠΈΠ· Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΎΡ Π΄ΠΎ ΡΠΎΡΠΊΠΈ (10;12). Π‘Π΄Π²ΠΈΠ³ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π½Π° 12 Π΅Π΄ΠΈΠ½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ ΡΠΎΡΠΊΠ° Π(10;24) Β«ΠΏΠ΅ΡΠ΅ΡΠ»Π°Β» Π² ΡΠΎΡΠΊΡ Π(10;12), Π° ΡΠΎΡΠΊΠ° Π(0;0) Β«ΠΏΠ΅ΡΠ΅ΡΠ»Π°Β» Π² ΡΠΎΡΠΊΡ (0;β12). ΠΠ½Π°ΡΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ ΠΎΡ Π² ΡΠΎΡΠΊΠ΅ (0;β12).
ΠΡΠΊΠΎΠΌΠ°Ρ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ°Π²Π½Π° β12.
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Ρ ΠΎΡΡΡ ΠΎΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ (0;Ρ). ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π°Π±ΡΡΠΈΡΡΡ Ρ = 0, ΠΈ Π½Π°ΠΉΠ΄ΡΠΌ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ:
ΠΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Ρ ΠΎΡΡΡ ΠΎΡ ΡΠ°Π²Π½Π° 3.
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΡΡ , Π·Π°Π΄Π°Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ
ΠΠΎΠ³Π΄Π° Π·Π°Π΄Π°Π½Π½Ρ Π΄Π²Π΅ ΠΏΡΡΠΌΡΠ΅, ΠΈ ΡΡΠΎΠΈΡ Π²ΠΎΠΏΡΠΎΡ ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΏΡΡΠΌΡΡ , ΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΠ· Π΄Π°Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ β Ρ Π²ΠΌΠ΅ΡΡΠΎ Ρ:
ΠΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ°Π²Π½Π° ΠΌΠΈΠ½ΡΡ ΡΠ΅ΡΡΠΈ.
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (β2;0) ΠΈ (0;2).
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (2;0) ΠΈ (0;2).
ΠΡΡΠΌΠ°Ρ a ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;4) ΠΈ (6;0). ΠΡΡΠΌΠ°Ρ b ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;8) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΏΡΡΠΌΠΎΠΉ a. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ b Ρ ΠΎΡΡΡ Ox.
ΠΡΡΠΌΠ°Ρ a ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0;4) ΠΈ (β6;0). ΠΡΡΠΌΠ°Ρ b ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0; β6) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΏΡΡΠΌΠΎΠΉ a. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ b Ρ ΠΎΡΡΡ Ox.
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠΈ ΠΎy ΠΈ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ B (6;4) ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠΎΡΠΊΡ A (6;8).
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ 2Ρ + 2Ρ = 6, Ρ ΠΎΡΡΡ ΠΎΡ .
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΡΡ , Π·Π°Π΄Π°Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ 3Ρ + 2Ρ = 6 ΠΈ Ρ = Ρ .
ΠΠΎΠ½Π΅ΡΠ½ΠΎ, Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°Π΄Π°ΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΡΠ΅ΡΠΈΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ. ΠΠΎ ΡΡΠ°Π²ΠΈΠ»Π°ΡΡ ΡΠ΅Π»Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°Π·Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Ρ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°Π΄Π΅ΡΡΡ, ΡΡΠΎ ΡΠ΄Π°Π»ΠΎΡΡ.
1. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΡΠΊΠΎ ΡΡΠ²ΠΎΠΈΡΡ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ ΡΠ°Π²Π΅Π½ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠΎ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π²Π°ΠΌ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°.
2. Π€ΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ. Π‘ Π΅Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²ΡΠ΅Π³Π΄Π° Π½Π°ΠΉΠ΄ΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, Π΅ΡΠ»ΠΈ Π΄Π°Π½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π²ΡΡ Π΅Ρ ΡΠΎΡΠ΅ΠΊ.
3. ΠΠΎΠΌΠ½ΠΈΡΠ΅ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΡΠ°Π²Π½Ρ.
4. ΠΠ°ΠΊ Π²Ρ ΠΏΠΎΠ½ΡΠ»ΠΈ, Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π·Π°Π΄Π°ΡΠ°Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². ΠΠ°Π΄Π°ΡΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ½ΠΎ.
5. ΠΠ°Π΄Π°ΡΠΈ Π² ΠΊΠΎΡΠΎΡΡΡ Π΄Π°Π½Ρ Π΄Π²Π΅ ΠΏΡΡΠΌΡΠ΅ ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°ΠΉΡΠΈ Π°Π±ΡΡΠΈΡΡΡ ΠΈΠ»ΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. Π’ΠΎ Π΅ΡΡΡ, ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ (Π½Π° Π»ΠΈΡΡΠ΅ Π² ΠΊΠ»Π΅ΡΠΊΡ) ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎ. *ΠΠΎ ΡΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°.
6. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅. ΠΡΠ»ΠΈ Π΄Π°Π½Π° ΠΏΡΡΠΌΠ°Ρ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Π΅Ρ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎ Π² ΡΠ°ΠΊΠΈΡ Π·Π°Π΄Π°ΡΠ°Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ΅ΡΠ΅Π· Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅. ΠΠ°ΠΊ Β«ΡΠ²ΠΈΠ΄Π΅ΡΡΒ» ΡΡΠΎΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ ΠΏΡΡΠΌΡΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½ΠΈΠΆΠ΅:
>> Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΎΡ 0 Π΄ΠΎ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ²
>> Π£Π³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΎΡ 90 Π΄ΠΎ 180 Π³ΡΠ°Π΄ΡΡΠΎΠ²
Π Π΄Π°Π½Π½ΡΡ Π΄Π²ΡΡ ΡΠ»ΡΡΠ°ΡΡ , ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Ρ ΡΠ°Π½Π³Π΅Π½ΡΠ° :
Π’ΠΎ Π΅ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠ³ΠΎΠ»Π²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠ°Π½Π³Π΅Π½Ρ Π±Π΅ΡΡΠ° Π² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΈ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π·Π½Π°ΠΊΠΎΠΌ.
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ±ΡΠΈΠΊΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π·Π°Π΄Π°ΡΠΈ, Π½Π΅ ΠΏΡΠΎΠΏΡΡΡΠΈΡΠ΅!
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ(ΡΠ΅ΠΊΡΡΠ΅ΠΉ)
Π‘Π΅ΠΊΡΡΠ°Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ Π·Π°Π½ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ. Π’ΠΎ Π΅ΡΡΡ, ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΡΠ΅ΠΉ.
ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ
Π‘Π΅ΠΊΡΡΠ°Ρ
1. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
Π
Π 1
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ
ΠΏΡΠ΅Π΄Π΅Π» Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ(ΡΠ΅ΠΊΡΡΠ΅ΠΉ)
ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ
Π‘Π΅ΠΊΡΡΠ°Ρ
ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅:
ΠΠΏΡΠ΅Π΄Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ(ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ)
ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ(ΡΠ΅ΠΊΡΡΠ΅ΠΉ)
ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ
Π
Π
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠΏΡΠ΅Π΄Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ ΠΡ ΡΡΠΈΡΠ°Π΅ΡΠ΅, ΡΡΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π°ΡΡΡΠ°Π΅Ρ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π»ΠΈΠ±ΠΎ ΠΏΠΎ ΠΊΠ°ΠΊΠΈΠΌ-ΡΠΎ Π΄ΡΡΠ³ΠΈΠΌ ΠΏΡΠΈΡΠΈΠ½Π°ΠΌ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ΄Π°Π»Π΅Π½ Ρ ΡΠ°ΠΉΡΠ°, ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΡΡΠ°Π²ΠΈΡΡ ΠΆΠ°Π»ΠΎΠ±Ρ Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π».
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΡ ΡΠ°Π½Π° ΡΡΡΠ΄Π°
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠΈΠ±Π»ΠΈΠΎΡΠ΅ΡΠ½ΠΎ-Π±ΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ Π² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ΅
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΡ ΡΠ°Π½Π° ΡΡΡΠ΄Π°
ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΊ Π»ΡΠ±ΠΎΠΌΡ ΡΡΠΎΠΊΡ, ΡΠΊΠ°Π·Π°Π² ΡΠ²ΠΎΠΉ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ (ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡ), ΠΊΠ»Π°ΡΡ, ΡΡΠ΅Π±Π½ΠΈΠΊ ΠΈ ΡΠ΅ΠΌΡ:
ΡΠ°ΠΊΠΆΠ΅ ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΡΠ±ΡΠ°ΡΡ ΡΠΈΠΏ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°:
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ
ΠΠΎΡ ΠΎΠΆΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ
ΠΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΡΠ°Π·ΠΈΡΡΡΡ ΠΠΠ§-ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ?
ΠΡΠ΅ΡΠΎΡΠΊΠ»Π΅ΡΠΎΠ· Ρ ΠΏΠΎΠΆΠΈΠ»ΡΡ Π»ΡΠ΄Π΅ΠΉ
ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΡΠ°Π±ΠΎΡΡ ΠΏΠΎ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠ΅ ΡΡΠΈΡΠΈΠ΄Π° Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Π΅
ΠΠ½ΡΠΈΡΠΎΡΡΠΎΠ»ΠΈΠΏΠΈΠ΄Π½ΡΠΉ ΡΠΈΠ½Π΄ΡΠΎΠΌ
ΠΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΡΠ½ΠΎΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΌΡ Π»ΡΡΠ΅Π²ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ
ΠΠ΅ΡΠΎΠ΄Ρ Π±ΠΎΡΡΠ±Ρ Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠΌΠΈ Π²ΠΈΡΡΡΠ°ΠΌΠΈ
ΠΠΎΠ»Π΅Π·Π½Ρ ΠΏΠΎΡΠ΅ΠΊ
ΠΠΈΠΏΠΎΠΊΡΠΈΡ ΠΏΠ»ΠΎΠ΄Π° ΠΈ Π°ΡΡΠΈΠΊΡΠΈΡ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ ΠΏΠΎΠΈΡΠΊΠΎΠΌ ΠΏΠΎ Π½Π°ΡΠ΅ΠΉ Π±Π°Π·Π΅ ΠΈΠ·
5422513 ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ².
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ
ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
Π£ΡΠΈΡΠ΅Π»Ρ ΠΎ ΠΠΠ: ΡΠ΅ΠΊΡΠ΅ΡΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 11 ΠΌΠΈΠ½ΡΡ
Π ΠΎΡΠΎΠ±ΡΠ½Π°Π΄Π·ΠΎΡ ΡΠ°Π·ΡΠ΅ΡΠΈΠ» ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΠΠ ΠΏΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ°ΠΌ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ°Ρ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 0 ΠΌΠΈΠ½ΡΡ
Π ΠΠΈΠ½ΠΏΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΊΠ°Π·Π°Π»ΠΈ ΠΎ ΡΠΎΡΠΌΠ°ΡΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΏΠΎΡΠ»Π΅ ΠΏΡΠ°Π·Π΄Π½ΠΈΠΊΠΎΠ²
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΡΡΠΈΠ½ ΠΏΡΠΈΠ·Π²Π°Π» ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΡΡΠΎΠ²Π΅Π½Ρ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π² ΠΊΠΎΠ»Π»Π΅Π΄ΠΆΠ°Ρ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π£ΡΠΈΡΠ΅Π»Ρ ΠΎ ΠΠΠ: ΡΠ΅ΠΊΡΠ΅ΡΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 11 ΠΌΠΈΠ½ΡΡ
ΠΠΈΠ½ΠΏΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ·Π΄Π°Π΅Ρ ΡΠΈΡΡΠΎΠ²ΡΡ ΠΏΡΠΈΡ ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ»ΡΠΆΠ±Ρ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ
ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ ΡΠΏΠΎΡΠ½ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ ΡΡ ΡΠ°ΠΌΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΡΡΠΌΠΎΠΉ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π΅Π½ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° (ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅Π³ΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΏΠΎΠ²ΠΎΡΠΎΡ ΠΎΡ ΠΎΡΠΈ Ox ΠΊ ΠΎΡΠΈ ΠΡ) ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ ΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ. [1]
Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ. k Π²ΡΠ΅Π³Π΄Π° ΡΠ°Π²Π΅Π½ , ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎ x.
ΠΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k ΠΈ Π½ΡΠ»Π΅Π²ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ΄Π²ΠΈΠ³Π° b ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ Π»Π΅ΠΆΠ°ΡΡ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°Π½ΡΠ°Ρ (Π² ΠΊΠΎΡΠΎΡΡΡ x ΠΈ y ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ). ΠΡΠΈ ΡΡΠΎΠΌ Π±ΠΎΠ»ΡΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΊΡΡΡΠ°Ρ ΠΏΡΡΠΌΠ°Ρ, Π° ΠΌΠ΅Π½ΡΡΠΈΠΌ β Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ³Π°Ρ.
ΠΡΡΠΌΡΠ΅ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ, Π΅ΡΠ»ΠΈ , Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ ΠΏΡΠΈ .
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΡ
ΠΠΎΠ»Π΅Π·Π½ΠΎΠ΅
Π‘ΠΌΠΎΡΡΠ΅ΡΡ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ «Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΡΠΌΠΎΠΉ» Π² Π΄ΡΡΠ³ΠΈΡ ΡΠ»ΠΎΠ²Π°ΡΡΡ :
ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ (ΠΏΡΡΠΌΠΎΠΉ) β β [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Π’Π΅ΠΌΠ°ΡΠΈΠΊΠΈ Π½Π΅ΡΡΠ΅Π³Π°Π·ΠΎΠ²Π°Ρ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΡΡΡ EN slope β¦ Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ°
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅) ΡΠΈΡΠ»ΠΎ k Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Ρ = kx+b (ΡΠΌ. ΠΠ½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ), Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ΅Π΅ Π½Π°ΠΊΠ»ΠΎΠ½ ΠΏΡΡΠΌΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ. Π ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π£. ΠΊ. k = tg Ο, Π³Π΄Π΅ Ο ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρβ¦ β¦ ΠΠΎΠ»ΡΡΠ°Ρ ΡΠΎΠ²Π΅ΡΡΠΊΠ°Ρ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ β ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΡΡΠΌΠ°Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π·Π° ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π»ΠΈΡΡ ΠΊΠΎΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠΠ’Π ΠΠ― β ΡΠ°Π·Π΄Π΅Π» Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΈΠΏΠΈΡΡΠ²Π°ΡΡ Π .ΠΠ΅ΠΊΠ°ΡΡΡ, ΠΈΠ·Π»ΠΎΠΆΠΈΠ²ΡΠ΅ΠΌΡ Π΅Π΅ ΠΎΡΠ½ΠΎΠ²Ρ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ Π³Π»Π°Π²Π΅ ΡΠ²ΠΎΠ΅Π³ΠΎβ¦ β¦ ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ ΠΠΎΠ»ΡΠ΅ΡΠ°
ΠΡΠ΅ΠΌΡ ΡΠ΅Π°ΠΊΡΠΈΠΈ (reaction time) β ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ (ΠΠ ), Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΠ°ΠΌΡΠΉ ΠΏΠΎΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ Π² ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡ ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠΠ½ΠΎ Π·Π°ΡΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ Π°ΡΡΡΠΎΠ½ΠΎΠΌΠΈΠΈ, Π² 1823 Π³., Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ Π² ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π²Π΅Π·Π΄ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠΈΡΠΊΠΈ ΡΠ΅Π»Π΅ΡΠΊΠΎΠΏΠ°. ΠΡΠΈ β¦ ΠΡΠΈΡ ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ
ΠΠΠ’ΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ ΠΠΠΠΠΠ β ΡΠ°Π·Π΄Π΅Π» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, Π΄Π°ΡΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Π½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ; Π·Π°Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ (Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅) ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π»ΠΈΠ½ ΠΊΡΠΈΠ²ΡΡ , ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ ΠΈ ΠΎΠ±ΡΠ΅ΠΌΠΎΠ² ΡΠΈΠ³ΡΡ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ ΠΊΡΠΈΠ²ΡΠΌΠΈ ΠΊΠΎΠ½ΡΡΡΠ°ΠΌΠΈ ΠΈ β¦ ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ ΠΠΎΠ»ΡΠ΅ΡΠ°
ΠΡΡΠΌΠ°Ρ β Π£ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΠ½Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΌ. ΠΡΡΠΌΠ°Ρ (Π·Π½Π°ΡΠ΅Π½ΠΈΡ). ΠΡΡΠΌΠ°Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ. ΠΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π·Π° ΠΎΠ΄Π½ΠΎβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ β ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΡΡΠΌΠ°Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π·Π° ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π»ΠΈΡΡ ΠΊΠΎΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΡΡΠΌΡΠ΅ β ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΡΡΠΌΠ°Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π·Π° ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π»ΠΈΡΡ ΠΊΠΎΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠ°Π»Π°Ρ ΠΏΠΎΠ»ΡΠΎΡΡ β ΠΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΡΠ°ΡΡ Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠΌ Β«ΠΠ»Π»ΠΈΠΏΡΠΈΡΒ». ΠΠ»Π»ΠΈΠΏΡ ΠΈ Π΅Π³ΠΎ ΡΠΎΠΊΡΡΡ ΠΠ»Π»ΠΈΠΏΡ (Π΄Ρ. Π³ΡΠ΅Ρ. αΌΞ»Ξ»Ξ΅ΞΉΟΞΉΟ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ, Π² ΡΠΌΡΡΠ»Π΅ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠ° ΡΠΊΡΡΠ΅Π½ΡΡΠΈΡΠΈΡΠ΅ΡΠ° Π΄ΠΎ 1) Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ ΡΠΎΡΠ΅ΠΊ M ΠΠ²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠΌΠΌΠ° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ ΠΎΡ Π΄Π²ΡΡ Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠ΅ΠΊ F1β¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ