Как косинус перевести в арктангенс

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Для успешной работы с арксинусами, арккосинусами, арктангенсами и арккотангенсами чисел нужно знать существующие между ними связи. Эти связи удобно записывать в виде формул.

В этой статье мы разберем основные формулы с arcsin, arccos, arctg и arcctg, для удобства работы и запоминания разобьем эти формулы по группам, дадим их вывод и доказательство, а также покажем примеры использования.

Навигация по странице.

Первые четыре блока формул представляют собой основные свойства арксинуса, арккосинуса, арктангенса и арккотангенса числа, в указанной статье сайта www.cleverstudents.ru Вы найдете и доказательство этих формул, и примеры их применения. Здесь мы не будем повторяться, а лишь приведем сами формулы, чтобы они все были в одном месте.

Синус арксинуса, косинус арккосинуса и т.п.

Как косинус перевести в арктангенс. pict001. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-pict001. картинка Как косинус перевести в арктангенс. картинка pict001

Эти формулы очевидны и напрямую следуют из определений арксинуса, арккосинуса, арктангенса и арккотангенса числа. Они показывают, чему равен синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса.

Арксинус синуса, арккосинус косинуса и т.п.

Как косинус перевести в арктангенс. pict004. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-pict004. картинка Как косинус перевести в арктангенс. картинка pict004

Эти формулы также очевидны и следуют из определений арксинуса, арккосинуса, арктангенса и арккотангенса. Они определяют, чему равен арксинус синуса, арктангенс тангенса, арккосинус косинуса и арккотангенс котангенса. Заметим, что стоит быть очень внимательными к указанным условиям, так как если угол (число) α выходит за указанные пределы, то эти формулы использовать нельзя, ибо они дадут неверный результат.

Связи между arcsin, arccos, arctg и arcctg противоположных чисел

Как косинус перевести в арктангенс. pict002. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-pict002. картинка Как косинус перевести в арктангенс. картинка pict002

Сумма арксинуса и арккосинуса числа, сумма арктангенса и арккотангенса числа

Как косинус перевести в арктангенс. pict003. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-pict003. картинка Как косинус перевести в арктангенс. картинка pict003

Записанные формулы позволяют выразить арксинус числа через арккосинус этого же числа, арккосинус через арксинус, арктангенс через арккотангенс и арккотангенс через тангенс того же числа.

Синус от арккосинуса, тангенс от арксинуса и иже с ними

На практике очень полезными оказываются формулы, устанавливающие отношения между тригонометрическими функциями и аркфункциями. К примеру, может потребоваться вычислить синус арккосинуса некоторого числа, или тангенс арксинуса. Запишем список формул, позволяющих решать подобные задачи, дальше покажем примеры их применения и приведем доказательства этих формул.

Как косинус перевести в арктангенс. pict005. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-pict005. картинка Как косинус перевести в арктангенс. картинка pict005

Приведем несколько примеров использования записанных формул. Например, вычислим косинус арктангенса корня из пяти. Соответствующая формула имеет вид Как косинус перевести в арктангенс. 001. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-001. картинка Как косинус перевести в арктангенс. картинка 001, таким образом Как косинус перевести в арктангенс. 002. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-002. картинка Как косинус перевести в арктангенс. картинка 002.

Другой пример: используя формулу синуса арккосинуса вида Как косинус перевести в арктангенс. 003. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-003. картинка Как косинус перевести в арктангенс. картинка 003, мы можем вычислить, к примеру, синус арккосинуса одной второй, имеем Как косинус перевести в арктангенс. 004. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-004. картинка Как косинус перевести в арктангенс. картинка 004. Заметим, что в этом примере вычисления можно провести и непосредственно, они приводят к тому же результату: Как косинус перевести в арктангенс. 005. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-005. картинка Как косинус перевести в арктангенс. картинка 005(при необходимости смотрите статьи вычисление значений синуса, косинуса, тангенса и котангенса и вычисление значений арксинуса, арккосинуса, арктангенса и арккотангенса).

Осталось показать вывод записанных формул.

Формулы, находящиеся в ячейках таблицы на диагонали, есть формулы синуса арксинуса, косинуса арккосинуса и т.д. Они были получены ранее, поэтому не нуждаются в доказательстве, и их мы будем использовать для доказательства остальных формул. Более того, для вывода формул нам еще потребуются основные тригонометрические тождества.

Выведем сначала формулу синуса арккосинуса, синуса арктангенса и синуса арккотангенса. Из основных тригонометрических тождеств Как косинус перевести в арктангенс. 006. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-006. картинка Как косинус перевести в арктангенс. картинка 006и Как косинус перевести в арктангенс. 007. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-007. картинка Как косинус перевести в арктангенс. картинка 007, а также учитывая, что Как косинус перевести в арктангенс. 008. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-008. картинка Как косинус перевести в арктангенс. картинка 008, легко получить следующие формулы Как косинус перевести в арктангенс. 009. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-009. картинка Как косинус перевести в арктангенс. картинка 009, Как косинус перевести в арктангенс. 010. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-010. картинка Как косинус перевести в арктангенс. картинка 010и Как косинус перевести в арктангенс. 011. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-011. картинка Как косинус перевести в арктангенс. картинка 011, выражающие синус через косинус, синус через тангенс и синус через котангенс при указанных условиях. Подставляя arccos a вместо альфа в первую формулу, получаем формулу синуса арккосинуса; подставляя arctg a вместо альфа во вторую формулу, получаем формулу синуса арктангенса; подставляя arcctg a вместо альфа в третью формулу, получаем формулу синуса арктангенса.

Вот краткая запись вышеперечисленных выкладок:

По аналогии легко вывести формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса:

Теперь покажем вывод формул тангенса арксинуса, тангенса арккосинуса и тангенса арккотангенса:

Формулы котангенса арксинуса, котангенса арккосинуса и котангенса арктангенса легко получить из формул тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса, поменяв в них числитель и знаменатель, так как Как косинус перевести в арктангенс. 030. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-030. картинка Как косинус перевести в арктангенс. картинка 030.

arcsin через arccos, arctg и arcctg; arccos через arcsin, arctg и arcctg и т.п.

Из формул связи тригонометрических и обратных тригонометрических функций, разобранных в предыдущем пункте, можно получить формулы, выражающие одну из аркфункций через другие аркфункции, например, выражающие арксинус одного числа, через арккосинус, арктангенс и арккотангенс другого числа. Перечислим их.

По этим формулам можно заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно:

Вот формулы, выражающие арккосинус через арксинус, арктангенс и арккотангенс:

Формулы арктангенса через арксинус, арккосинус и арккотангенс имеют следующий вид:

Наконец, вот ряд формул с арккотангенсом:

Доказать все записанные формулы можно, отталкиваясь от определений арксинуса, арккосинуса, арктангенса и арккотангенса числа, а также формул из предыдущего пункта.

Для примера, докажем, что Как косинус перевести в арктангенс. 032. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-032. картинка Как косинус перевести в арктангенс. картинка 032. Известно, что Как косинус перевести в арктангенс. 043. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-043. картинка Как косинус перевести в арктангенс. картинка 043при указанных a представляет собой угол (число) от минус пи пополам до пи пополам. Более того, по формуле синуса арктангенса имеем Как косинус перевести в арктангенс. 044. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-044. картинка Как косинус перевести в арктангенс. картинка 044. Следовательно, Как косинус перевести в арктангенс. 043. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-043. картинка Как косинус перевести в арктангенс. картинка 043при −1 является арксинусом числа a по определению, то есть, Как косинус перевести в арктангенс. 032. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-032. картинка Как косинус перевести в арктангенс. картинка 032.

По аналогии можно доказать и остальные формулы, представленные в данном пункте статьи.

В данном примере мы могли вычислить требуемое значение и непосредственно: Как косинус перевести в арктангенс. 047. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-047. картинка Как косинус перевести в арктангенс. картинка 047. Очевидно, что мы получили тот же результат.

Понятно, что для вычисления требуемого значения мы могли поступить и иначе, воспользовавшись формулой, выражающей синус через котангенс вида Как косинус перевести в арктангенс. 011. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-011. картинка Как косинус перевести в арктангенс. картинка 011. Тогда решение выглядело бы так: Как косинус перевести в арктангенс. 048. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-048. картинка Как косинус перевести в арктангенс. картинка 048. А можно было и сразу применить формулу синуса арккотангенса вида Как косинус перевести в арктангенс. 049. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-049. картинка Как косинус перевести в арктангенс. картинка 049: Как косинус перевести в арктангенс. 050. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-050. картинка Как косинус перевести в арктангенс. картинка 050.

Некоторые другие формулы

Источник

Узнать ещё

Знание — сила. Познавательная информация

cos (arctg x)

С помощью определения косинуса и тангенса в прямоугольном треугольнике, а также определения арктангенса и теоремы Пифагора найти косинус арктангенса cos (arctg x) можно быстро, не привлекая дополнительные тригонометрические формулы.

Как косинус перевести в арктангенс. sinarctgx. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-sinarctgx. картинка Как косинус перевести в арктангенс. картинка sinarctgx По определению арктангенса, arctg x — это такое число альфа, что

Как косинус перевести в арктангенс. quicklatex.com b83b46fb837b7f9860364421d18a41ed l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com b83b46fb837b7f9860364421d18a41ed l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com b83b46fb837b7f9860364421d18a41ed l3

Тангенс угла альфа в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему:

Как косинус перевести в арктангенс. quicklatex.com 4089ee738be93a343853ff6443ffc4cd l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com 4089ee738be93a343853ff6443ffc4cd l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com 4089ee738be93a343853ff6443ffc4cd l3

Нам нужно найти косинус этого же угла альфа. Поскольку косинус альфа равен отношению прилежащего катета к гипотенузе

Как косинус перевести в арктангенс. quicklatex.com a4909c4bf3e4c4cfef420e10eb132c8e l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com a4909c4bf3e4c4cfef420e10eb132c8e l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com a4909c4bf3e4c4cfef420e10eb132c8e l3

остается найти гипотенузу. По теореме Пифагора

Как косинус перевести в арктангенс. quicklatex.com 24075e064827ca31fcbd5fbcb180e511 l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com 24075e064827ca31fcbd5fbcb180e511 l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com 24075e064827ca31fcbd5fbcb180e511 l3

Как косинус перевести в арктангенс. quicklatex.com b6501903f0684c0a5d73fa63ab5b03a0 l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com b6501903f0684c0a5d73fa63ab5b03a0 l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com b6501903f0684c0a5d73fa63ab5b03a0 l3

Как косинус перевести в арктангенс. quicklatex.com 6771b0154dc3a70d9eca0edbc090908a l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com 6771b0154dc3a70d9eca0edbc090908a l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com 6771b0154dc3a70d9eca0edbc090908a l3

1) Найти cos (artg (3/4)).

Как косинус перевести в арктангенс. quicklatex.com b82777fbe5090b10c51daf1c9447f968 l3. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-quicklatex.com b82777fbe5090b10c51daf1c9447f968 l3. картинка Как косинус перевести в арктангенс. картинка quicklatex.com b82777fbe5090b10c51daf1c9447f968 l3

Поскольку тангенс альфа — это отношение противолежащего катета к прилежащему, то противолежащий катет b=3, прилежащий катет a=4. Нам нужно найти косинус этого же угла альфа. Так как косинус равен отношению прилежащего катета к гипотенузе, находим по теореме Пифагора гипотенузу

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Для четкого понимания рассмотрим пример.

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Таблица синусов основных углов предлагает такие результаты значений углов:

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

— π 2— π 3— π 4— π 60π 6π 4π 3в г р а д у с а х— 90 °— 60 °— 45 °— 30 °0 °30 °45 °60 °a r c sin α к а к ч и с л о— π 2— π 3— π 4— π 60π 6π 4π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

Следуя из таблицы, находим значения арккосинуса:

π5 π 63 π 42 π 3π 2π 3π 4π 60в г р а д у с а х180 °150 °135 °120 °90 °60 °45 °30 °0 °a r c cos α к а к ч и с л оπ5 π 63 π 42 π 3π 2π 3π 4π 60

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α— 3— 1— 3 303 313
a r c t g a к а к у г о лв р а д и а н а х— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c t g a к а к ч и с л о— π 3— π 4— π 60π 6π 4π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Как косинус перевести в арктангенс. image010 bmKZ1IK. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-image010 bmKZ1IK. картинка Как косинус перевести в арктангенс. картинка image010 bmKZ1IK

Как косинус перевести в арктангенс. image011 p59d3De. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-image011 p59d3De. картинка Как косинус перевести в арктангенс. картинка image011 p59d3De

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Как косинус перевести в арктангенс. image012 eyl9kBt. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-image012 eyl9kBt. картинка Как косинус перевести в арктангенс. картинка image012 eyl9kBt

Нахождение значения arcsin, arccos, arctg и arcctg

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Как косинус перевести в арктангенс. image013 NGfZVtT. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-image013 NGfZVtT. картинка Как косинус перевести в арктангенс. картинка image013 NGfZVtT

Как косинус перевести в арктангенс. image014 2FlYAHT. Как косинус перевести в арктангенс фото. Как косинус перевести в арктангенс-image014 2FlYAHT. картинка Как косинус перевести в арктангенс. картинка image014 2FlYAHT

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Источник

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

Теперь разберем примеры, как они применяются в задачах.

Решение

У нас для этого есть подходящая формула следующего вида: cos ( a r c t g α ) = 1 1 + α 2

Подставляем нужное значение: cos ( a r c t g 5 ) = 1 1 + ( 5 ) 2 = 2 6

Решение

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin ( a r c cos 1 2 ) = sin π 3 = 3 2

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

sin 2 α + cos 2 α = 1 1 + c t g 2 α = 1 sin 2 α

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

Следовательно, sin ( a r c t g α ) = t g ( a r c t g α ) 1 + t g 2 ( a r c t g α ) = α 1 + α 2

Следовательно, sin ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

следует, что cos ( a r c t g α ) = c t g ( a r c c t g α ) 1 + c t g 2 ( a r c c t g α ) = α 1 + α 2

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

А так мы выразим арккосинус через остальные обратные функции:

Формула выражения арктангенса:

Последняя часть – выражение арккотангенса через другие обратные функции:

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Решение

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Источник

Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса

Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа

Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.

sin ( a r c sin a ) = a

Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.

Пример 1. Свойства обратных тригонометрических функций

Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел

Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.

arcsin, arccos, arctg и arcctg противоположных чисел

Доказательство свойства арксинусов противоположных чисел завершено.

Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.

Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.

Сумма арксинуса и арккосинуса, арктангенса и арккотангенса

Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.

Сумма arcsin и arccos

Соответственно, для арктангенса и арккотангенса

Сумма arctg и arcctg

Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.

Пример 2. Сумма арксинуса и арккосинуса

Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса

Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса

Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.

Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *