Основные арифметические действия: определения, примеры
В данной публикации мы рассмотрим определения, общие формулы и примеры 4 основных арифметических (математических) действий с числами: сложения, вычитания, умножения и деления.
Сложение
Сложение – это математическое действие, в результате которого находится сумма.
Обозначается сложение специальным знаком “+“ (плюс), а сумма – “Σ“.
Пример: найдем сумму чисел. 1) 3, 5 и 23. 2) 12, 25, 30, 44.
Как найти значение выражения используя свойства арифметических действий?
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так как этими свойствами придется часто пользоваться и в алгебре.
a+b+c=c+a+b Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Пример: 3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15; 4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33. В общем случае: а + b + с = а+(b + с) = b+(а + с) и т. п. Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например: 20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7. В общем случае: а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например: 18-(9-5) = 18 + 5-9= 14. Вообще: а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Сочетательный закон умножения
Так: 7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще: abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так: 3*(5*4) = (3*5)*4= 15*4 = 60. Вообще: a•(bcd…) = <[(a·b)•c]•d>… Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один из сомножителей, оставив другие без изменения.
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре- результаты сложить.
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так: (8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще: (а — b)с = ас — bc,
а(b — с) = ab — ас, т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое и из первого результата вычесть второй:
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один из сомножителей, оставив другие без изменения:
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится. Поясним это свойство на следующих двух примерах: 1)8:3 = 8/3|, умножим делимое и делитель, положим, на 5; тогда получим новое частное: (8*5)/(3*5) которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда (am) : (bm) = а : b, что можно написать и так: am/bm= a/b
Умножение натуральных чисел на 10, 100, 1000; и т.д.
Арифметика. Арифметические действия
Арифметическим действием называют операцию, удовлетворяющую ряду свойств и позволяющую по нескольким данным числам найти новое число.
Арифметикой называют науку, изучающую простейшие свойства чисел и арифметических действий.
Существуют шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня.
Обратные арифметические действия
Вычитание – это арифметическое действие, обратное к сложению, деление – действие, обратное к умножению, извлечение корня – действие, обратное к возведению в степень.
Свойства арифметических действий
Порядок выполнения арифметических действий
Сложение и вычитание называют действиями первой ступени, умножение и деление – действиями второй ступени, возведение в степень и извлечение корня – действиями третьей ступени.
Действия одной ступени выполняются в том же порядке, в каком они записаны в формуле.
Если в формуле содержатся действия разных ступеней, то сначала выполняют действия высших ступеней, а затем низших ступеней.
Если формула содержит скобки, то сначала выполняют действия в скобках. Скобки бывают круглыми, квадратными и фигурными, причем между ними нет никакой разницы.
Если скобки содержат другие скобки, то сначала выполняют действия во «внутренних» скобках.
Умножение натуральных чисел на 10, 100, 1000 и т.д.
Действительно, например, число 3610 состоит из трёх тысяч, шести сотен и одного десятка, поэтому
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Примеры использования свойств сложения и вычитания
Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:
Пример 1
Вычислить сумму слагаемых с использованием разных свойств:
а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15
б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22
в) 30 + 0 + 13 = 30 + 13 = 43
Пример 2
Применить разные свойства при вычислении разности:
Классификация вычислительных приемов. Методы работы педагога по формированию вы¬числительного навыка
Классификация вычислительных приемов. Методы работы педагога по формированию вычислительного навыка
Классификация вычислительных приёмов. 1. Приемы, теоретическая основа которых — конкретный смысл арифметических действий. К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а + 2, а + 3, а + 4, а + 0; приемы табличного сложения и вычитания с переходом через десяток в пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления. 2. Приемы, теоретической основой которых служат свойства арифметических действий. К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 53 ± 20, 47 ± 3, 30 – 6, 9 + 3, 12 – 3, 35 ± 7, 40 ± 23, 57 ± 32, 64 ± 18; аналогичные приемы для случаев сложения и вычитания чисел больших, чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14 × 5, 5 × 14, 81 : 3, 18 Ч 40, 180 : 20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления. Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений. 3. Приемы, теоретическая основа которых — связи между компонентами и результатами арифметических действий. К ним относятся приемы для случаев вида 9 × 7, 21 : 3, 60 : 20, 54 : 18, 9 : 1, 0 : 6. При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием. 4. Приемы, теоретическая основа которых — изменение результатов арифметических действий в зависимости от изменения одного из компонентов. Это приемы округления при выполнении сложения и вычитания чисел (46 + 19, 512 – 298) и приемы умножения и деления на 5, 25, 50. Введение этих приемов также требует предварительного изучения соответствующих зависимостей. 5. Приемы, теоретическая основа которых — вопросы нумерации чисел. Это приемы для случаев вида а ± 1, 10 + 6, 16 – 10, 16 – 6, 57 Ч 10, 1200 : 100; аналогичные приемы для больших чисел. Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел, позиционного принципа записи чисел). 6. Приемы, теоретическая основа которых — правила. К ним относятся приемы для двух случаев: а × 1, а × 0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто сообщаются учащимся и в соответствии с ними выполняются вычисления.
В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Вместе с тем, научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости этих навыков для дальнейшего обучения в школе.
Приоритетными задачами в развитии российского образования являются формирование у учащихся личностных качеств, а также универсальных учебных умений, а также и способностей к самостоятельной учебной деятельности.
Формирование у младших школьников вычислительных навыков остаётся одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.
Вычислительный навык – это высокая степень овладения вычислительными приёмами, это вычислительный приём, доведенный до автоматизма. Приобрести вычислительный навык – значит, для каждого случая знать какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро. В качестве сформированности полноценного вычислительного навыка можно выделить следующие критерии: правильность; осознанность; рациональность; обобщённость; автоматизм; прочность.
О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению.
Формирование всякого вычислительного навыка включает в себя ряд этапов:
I – подготовительный этап;
II – ознакомление с новым вычислительным приемом;
III – усвоение вычислительного приема и формирование вычислительного умения и навыка.
В процессе работы важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.
На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе.
На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений.
На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.
Названные стадии не имеют четких границ: одна постепенно переходит в другую.
Выбирая методы работы по формированию вычислительных навыков на уроках математики, перед учителями встаёт вопрос, как сделать привычную и, казалось бы, однообразную работу эффективной, а значит интересной и увлекательной. Именно это и заставляет учителей постоянно придумывать что-то новое, совершенствовать уже известное.
Решению указанных задач способствует применение в образовательном процессе технологии деятельностного метода, благодаря которому учитель имеет возможность на уроках независимо от их предметного содержания организовывать выполнение учащимися всего комплекса УУД, определенных ФГОС. При деятельностном подходе к обучению главная задача учителя – не «донести», «преподнести» и показать учащимся, а организовать совместный поиск решения, возникший перед ними задачи.
Теперь процесс обучения представляет собой сложную динамическую систему, в которой в органичном единстве происходит взаимосвязанная деятельность учителя и ученика.
В этой системе под руководством учителя учащиеся овладевают основами наук, способами деятельности и рациональными приемами работы. Задача учителя состоит не только в том, чтобы сообщать знания, а и управлять процессом усвоения знаний и способов деятельности. Задача ученика- овладевать системой знаний, способами их приобретения, переработки, сохранения и применения, воспитывая в себе необходимые качества личности.
За основную структурную единицу процесса мышления принимается действие. Действие, как единица анализа деятельности учащегося. Учитель должен уметь не только выделять действия, которые входят в разные виды познавательной деятельности учащихся, но и найти их структуру, функциональные части, основные свойства и закономерности их становления.
Избежать быстрой утомляемости и снижения внимания при выполнении вычислений поможет чередование различных видов деятельности, отказ от однообразных тренировочных упражнений, обучение приёмам действия контроля. Действие контроля должно присутствовать на каждом этапе выполнения вычислительного приёма. Только в этом случае возможно постоянное прослеживание хода выполнения учебных действий, своевременное обнаружение различных больших и малых погрешностей в их выполнении, а также внесение необходимых корректив в них. Обнаруженная ошибка в процессе вычислений позволит сохранить ребёнку внутренние силы, предотвратить преждевременную усталость. Для контроля в выполнении письменных вычислений целесообразно показать ученикам, как использовать опорные сигнал, например точки, напоминающие о том, что следует учесть перенесённую через разряд единицу. В связи с этим необходимо больше внимания уделять формированию действия контроля в процессе работы над вычислительными приёмами и навыками, так как организационное на уроке математики действие контроля, приводит к концентрации внимания всех учащихся, формирует в практической деятельности каждого ученика умение рассуждать, исключает ошибки в тетрадях, что позволяет совершенствовать умения осознанно выполнять вычислительные приёмы.
Присутствие в вычислительных упражнениях элемента занимательности, игры, догадки, сообразительности, использование интересного наглядного материала – вот те основные приёмы активизации познавательной деятельности, реализация которых позволит решить в практике обучения и задачу формирования прочных вычислительных навыков, и задачу развития познавательных способностей учащихся.
Использование на уроках математики заданий различного типа возбуждает у детей интерес, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.