ΡΠ°Π½Π³Π΅Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΡ ΡΡΠΎΡΠΎΠ½
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΌΡ Π½Π°ΡΠ½Π΅ΠΌ Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°. ΠΡΠΎ ΠΎΡΠ½ΠΎΠ²Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΠΏΡΡΠΌΠΎΠΉ ΡΠ³ΠΎΠ» β ΡΡΠΎ ΡΠ³ΠΎΠ», ΡΠ°Π²Π½ΡΠΉ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ². ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΡΡΡΡΠΉ ΡΠ³ΠΎΠ» β ΠΌΠ΅Π½ΡΡΠΈΠΉ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π’ΡΠΏΠΎΠΉ ΡΠ³ΠΎΠ» β Π±ΠΎΠ»ΡΡΠΈΠΉ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ². ΠΡΠΈΠΌΠ΅Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊ ΡΠ°ΠΊΠΎΠΌΡ ΡΠ³Π»Ρ Β«ΡΡΠΏΠΎΠΉΒ» β Π½Π΅ ΠΎΡΠΊΠΎΡΠ±Π»Π΅Π½ΠΈΠ΅, Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½ π
ΠΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° β ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Π°, Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΠ°ΡΠ΅ΡΡ β ΡΡΠΎΡΠΎΠ½Ρ, Π»Π΅ΠΆΠ°ΡΠΈΠ΅ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ².
Π‘ΠΈΠ½ΡΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅:
ΠΠΎΡΠΈΠ½ΡΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅:
Π’Π°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ:
ΠΡΡΠ³ΠΎΠ΅ (ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΊ Π΅Π³ΠΎ ΠΊΠΎΡΠΈΠ½ΡΡΡ:
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΈΠ»ΠΈ, ΡΡΠΎ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅, ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΊ ΡΠΈΠ½ΡΡΡ):
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π½ΠΈΠΆΠ΅. ΠΠ½ΠΈ ΠΏΡΠΈΠ³ΠΎΠ΄ΡΡΡΡ Π½Π°ΠΌ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°Π²Π°ΠΉΡΠ΅ Π΄ΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ· Π½ΠΈΡ .
Π₯ΠΎΡΠΎΡΠΎ, ΠΌΡ Π΄Π°Π»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π·Π°ΠΏΠΈΡΠ°Π»ΠΈ ΡΠΎΡΠΌΡΠ»Ρ. Π Π΄Π»Ρ ΡΠ΅Π³ΠΎ Π²ΡΠ΅-ΡΠ°ΠΊΠΈ Π½ΡΠΆΠ½Ρ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ?
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ Π·Π½Π°Ρ Π΄Π²Π° ΡΠ³Π»Π° Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠ΅ΡΠΈΠΉ. ΠΠ½Π°Ρ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠ΅ΡΡΡ. ΠΠ½Π°ΡΠΈΡ, Π΄Π»Ρ ΡΠ³Π»ΠΎΠ² β ΡΠ²ΠΎΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅, Π΄Π»Ρ ΡΡΠΎΡΠΎΠ½ β ΡΠ²ΠΎΠ΅. Π ΡΡΠΎ Π΄Π΅Π»Π°ΡΡ, Π΅ΡΠ»ΠΈ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ ΠΎΠ΄ΠΈΠ½ ΡΠ³ΠΎΠ» (ΠΊΡΠΎΠΌΠ΅ ΠΏΡΡΠΌΠΎΠ³ΠΎ) ΠΈ ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, Π° Π½Π°ΠΉΡΠΈ Π½Π°Π΄ΠΎ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ?
Π‘ ΡΡΠΈΠΌ ΠΈ ΡΡΠΎΠ»ΠΊΠ½ΡΠ»ΠΈΡΡ Π»ΡΠ΄ΠΈ Π² ΠΏΡΠΎΡΠ»ΠΎΠΌ, ΡΠΎΡΡΠ°Π²Π»ΡΡ ΠΊΠ°ΡΡΡ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΠΈ Π·Π²Π΅Π·Π΄Π½ΠΎΠ³ΠΎ Π½Π΅Π±Π°. ΠΠ΅Π΄Ρ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΡ Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΈΡ Π΅ΡΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ³Π»Π° β Π΄Π°ΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΠΈ ΡΠ³Π»Π°ΠΌΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ½Π°Ρ ΡΠ³ΠΎΠ», ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅ Π΅Π³ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΡΠ°Π±Π»ΠΈΡΠ°ΠΌ. Π Π·Π½Π°Ρ ΡΠΈΠ½ΡΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»ΠΎΠ² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΎΠ΄Π½Ρ ΠΈΠ· Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅.
0 | |
0 | |
0 | |
0 | β |
β | 0 |
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π΄Π²Π° ΠΊΡΠ°ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΠΊΠ° Π² ΡΠ°Π±Π»ΠΈΡΠ΅. ΠΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΡΠ³Π»ΠΎΠ² ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ.
Π’Ρ Π½Π°ΡΠ΅Π» ΡΠΎ, ΡΡΠΎ ΠΈΡΠΊΠ°Π»? ΠΠΎΠ΄Π΅Π»ΠΈΡΡ Ρ Π΄ΡΡΠ·ΡΡΠΌΠΈ!
Π Π°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°Π΄Π°Ρ ΠΏΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈΠ· ΠΠ°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ Π€ΠΠΠ.
ΠΠ°Π΄Π°ΡΠ° ΡΠ΅ΡΠ°Π΅ΡΡΡ Π·Π° ΡΠ΅ΡΡΡΠ΅ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΈΡΠ°Π³ΠΎΡΠ°.
Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Ρ ΡΠ³Π»Π°ΠΌΠΈ ΠΈ β ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ. Π Π½Π΅ΠΌ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° Π² ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅ ΠΊΠ°ΡΠ΅ΡΠ°.
ΠΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² β ΡΠΎ Π΅ΡΡΡ Π½Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΈΠ»ΠΈ ΡΠ³Π»ΠΎΠ². ΠΠΎ ΡΡΠΎ Π½Π΅ Π²ΡΡ! Π Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π°Π΄Π°Ρ, Π³Π΄Π΅ ΡΠΈΠ³ΡΡΠΈΡΡΠ΅Ρ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈΠ»ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΡΠ³Π»Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ± ΡΡΠΎΠΌ β Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅.
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ: ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π±Π°Π·ΠΎΠ²ΡΠΌ ΠΏΠΎΠ½ΡΡΠΈΡΠΌ ΠΈ Π΄Π΅ΡΠΈΠ½ΠΈΡΠΈΡΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π½Π΅ΠΉ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ: ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°. Π Π°Π·ΡΡΡΠ½Π΅Π½ ΠΈ ΠΏΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ ΠΈΡ ΡΠΌΡΡΠ» Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
ΠΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ», Π²ΡΡΠ°ΠΆΠ°Π»ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ°Π½Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Ρ Π΄Π»Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°!
Π ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ABC Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ Π‘ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Π ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΠ° BC ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ AB.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ Π΄Π»ΠΈΠ½Π°ΠΌ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΠΈΠ½ΡΡ (sin) ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π½Π΅ Π³ΠΎΠ²ΠΎΡΡΡ «ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Ξ± «. Π‘Π»ΠΎΠ²Π° «ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°» ΠΏΡΠΎΡΡΠΎ ΠΎΠΏΡΡΠΊΠ°ΡΡ, ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Ρ, ΡΡΠΎ ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΈ ΡΠ°ΠΊ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΎ ΡΠ΅ΠΌ ΠΈΠ΄Π΅Ρ ΡΠ΅ΡΡ.
Π§ΠΈΡΠ»Π°
ΠΠ°ΠΊ Π±ΡΡΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°, Π° Π½Π΅ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°?
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠΈΡΠ»Π°
Π‘ΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ, ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΡΠΈΡΠ»Π° t Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΠΈΠ½ΡΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡΡ, ΡΠ°Π½Π³Π΅Π½ΡΡ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΡ Π² t ΡΠ°Π΄ΠΈΠ°Π½.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΈΠ½ΡΡ ΡΠΈΡΠ»Π° 10 Ο ΡΠ°Π²Π΅Π½ ΡΠΈΠ½ΡΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 10 Ο ΡΠ°Π΄.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅Π³ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅.
ΠΡΠ±ΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ t ΡΡΠ°Π²ΠΈΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΠΎΡΠΊΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ.
Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ²ΡΠ·Ρ ΡΠΈΡΠ»Π° ΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π°, ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.
ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΠΈ Π½Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, Π΄Π°Π½Π½ΠΎΠΌΡ Π² Π½Π°ΡΠ°Π»Π΅ ΡΡΠΎ ΠΏΡΠ½ΠΊΡΠ°. Π’ΠΎΡΠΊΠ° Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΡΠΈΡΠ»Ρ t, ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΡΠΎΡΠΊΠΎΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π½Π° ΡΠ³ΠΎΠ» t ΡΠ°Π΄ΠΈΠ°Π½.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, Ρ ΠΊΠ°ΠΊΠΈΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ³Π»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΠΈΠ»ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ) ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ sin, cos, tg ΠΈ ctg ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π΄Π°Π½Π½ΡΠΌ Π² ΡΠ°ΠΌΠΎΠΌ Π½Π°ΡΠ°Π»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌ ΠΈ ΡΠ³Π»Ρ Π°Π»ΡΡΠ°, Π»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ². Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌΠΈ, Π΄Π°Π½Π½ΡΠΌΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΡΠΎ.
Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Ξ± ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
sin Ξ± = A 1 H O A 1 = y 1 = y
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Π΄Π»Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡ. Π£ΡΠΎΠΊ 1. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠ΅ Π²ΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ βΠ’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡβ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ.
ΠΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ. ΠΠΎΠ΄ΠΏΠΈΡΠΈΡΡ!
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ:
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ² Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊ Π½Π΅ΠΌΡ ΠΊΠ°ΡΠ΅Ρ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ.
Π‘ΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
sin Ξ± = ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
ΠΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
cos Ξ± = ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡΡ).
tg Ξ± = ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΊ ΡΠΈΠ½ΡΡΡ).
ctg Ξ± = ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ
tg β A = sin β A cos β A = C B A C
ctg β A = cos β A sin β A = A C C B
tg β B = sin β B cos β B = A C C B
ctg β B = cos β B sin β B = C B A C
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Π°Ρ Π°Π±ΡΡΡΠ°ΠΊΡΠΈΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠ»ΠΈ ΠΏΠΎΠ½ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΠΏΡ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ βΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π°β, ΡΠΎ Π²ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π±ΡΠ΄Π΅Ρ Π²Π°ΠΌ ΠΏΠΎΠ΄Π²Π»Π°ΡΡΠ½Π°. Π ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΠΊ Π²ΠΈΠ΄Π΅ΠΎ Π΅ΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π°.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³ β ΡΡΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ A O B :
cos Ξ± = O B O A = O B 1 = O B
sin Ξ± = A B O A = A B 1 = A B
ΠΡΠ°ΠΊ, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ A ΠΏΠΎ ΠΎΡΠΈ x (ΠΎΡΡ Π°Π±ΡΡΠΈΡΡ), ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ A ΠΏΠΎ ΠΎΡΠΈ y (ΠΎΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ).
ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΡΠ³ΠΎΠ» Ξ± β ΡΡΠΏΠΎΠΉ, ΡΠΎ Π΅ΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ 90 Β° :
ΠΡΡ ΠΎΠ΄Π½ΠΎ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅.
Π‘ΠΈΠ½ΡΡ ΡΡΠΏΠΎΠ³ΠΎ ΡΠ³Π»Π° β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π° ΠΊΠΎΡΠΈΠ½ΡΡ β ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ
sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ°Π½Π½ΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ β ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΡΠ°Π³ΠΎΡΠ° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ O A B :
A B 2 + O B 2 = O A 2
sin 2 Ξ± + cos 2 Ξ± = R 2
sin 2 Ξ± + cos 2 Ξ± = 1
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π°Π±Π»ΠΈΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π³ΡΠ°Π΄ΡΡΡ ΠΈ ΡΠ°Π΄ΠΈΠ°Π½Ρ
ΠΠ°ΠΊ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π³ΡΠ°Π΄ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ, Π° ΡΠ°Π΄ΠΈΠ°Π½Ρ Π² Π³ΡΠ°Π΄ΡΡΡ? ΠΠ°ΠΊ ΠΈ ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° Π³ΡΠ°Π΄ΡΡΠ½Π°Ρ ΠΌΠ΅ΡΠ° ΡΠ³Π»Π°? Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π΄ΠΈΠ°Π½Ρ ΠΈ ΡΠ°Π΄ΠΈΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠ° ΡΠ³Π»Π°? ΠΡΠΈΡΠ΅ ΠΎΡΠ²Π΅ΡΡ Π² ΡΡΠΎΠΌ Π²ΠΈΠ΄Π΅ΠΎ!
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠ»ΠΈ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ Π΄Π°Π½Π½ΡΠΉ ΡΠΈΡΡΠ½ΠΎΠΊ,
ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ:
sin 180 Β° = sin ( 180 Β° β 0 Β° ) = sin 0 Β°
sin 150 Β° = sin ( 180 Β° β 30 Β° ) = sin 30 Β°
sin 135 Β° = sin ( 180 Β° β 45 Β° ) = sin 45 Β°
sin 120 Β° = sin ( 180 Β° β 60 Β° ) = sin 60 Β°
cos 180 Β° = cos ( 180 Β° β 0 Β° ) = β cos 0 Β°
cos 150 Β° = cos ( 180 Β° β 30 Β° ) = β cos 30 Β°
cos 135 Β° = cos ( 180 Β° β 45 Β° ) = β cos 45 Β°
cos 120 Β° = cos ( 180 Β° β 60 Β° ) = β cos 60 Β°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΏΠΎΠΉ ΡΠ³ΠΎΠ» Ξ² :
ΠΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΏΠΎΠ³ΠΎ ΡΠ³Π»Π° Ξ² = 180 Β° β Ξ± Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄ΡΡ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
sin ( 180 Β° β Ξ± ) = sin Ξ±
cos ( 180 Β° β Ξ± ) = β cos Ξ±
tg ( 180 Β° β Ξ± ) = β tg Ξ±
ctg ( 180 Β° β Ξ± ) = β ctg Ξ±
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΡΠΈΠ½ΡΡΠΎΠ²
Π ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Ρ ΡΠΈΠ½ΡΡΠ°ΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΡ ΡΠ³Π»ΠΎΠ².
a sin β A = b sin β B = c sin β C
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π Π°ΡΡΠΈΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΡΠΈΠ½ΡΡΠΎΠ²
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊ ΡΠΈΠ½ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΡΠ³Π»Π° ΡΠ°Π²Π½ΠΎ Π΄Π²ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠ°ΠΌ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ Π²ΠΎΠΊΡΡΠ³ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
a sin β A = b sin β B = c sin β C = 2 R
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²
ΠΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΌΠΈΠ½ΡΡ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½ Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ.
a 2 = b 2 + c 2 β 2 b c β cos β A
b 2 = a 2 + c 2 β 2 a c β cos β B
c 2 = a 2 + b 2 β 2 a b β cos β C
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠΠΠ
ΠΠΎΠ΄ΡΠ»Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ: Π·Π°Π΄Π°Π½ΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠΎ ΡΠ΅ΠΌΠ° 10-11 ΠΊΠ»Π°ΡΡΠΎΠ².
ΠΠ· ΡΠ΅ΡΠΈΠΈ Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ Π²Ρ ΡΠ·Π½Π°Π΅ΡΠ΅, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π·Π°ΡΠ΅ΠΌ ΠΎΠ½ΠΈ Π½ΡΠΆΠ½Ρ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ. ΠΡΠ»ΠΈ Π²Ρ ΠΏΠΎΠΉΠΌΡΡΠ΅ ΡΡΠΈ Π±Π°Π·ΠΎΠ²ΡΠ΅ ΡΠ΅ΠΌΡ, ΡΠΎ Π²ΡΠΊΠΎΡΠ΅ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ Π±Π΅Π· ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠ΅ΡΠ°ΡΡ Π»ΡΠ±ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ!
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ
9 ΠΊΠ»Π°ΡΡ, 10 ΠΊΠ»Π°ΡΡ, ΠΠΠ/ΠΠΠ
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ sin ΠΈ cos ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°
ΠΡ ΡΠΆΠ΅ Π½Π°Π²Π΅ΡΠ½ΡΠΊΠ° Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΡΠΉ β ΡΡΠΎ ΡΠ°Π²Π½ΡΠΉ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° β ΡΡΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ, ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π»ΡΠ±ΡΡ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π΄ΡΡΠ³Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ»ΡΡ ΠΊ ΡΠ΅ΡΠ΄ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ β ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ ΠΈ ΠΏΠΎΠ»ΡΠ±ΠΈΡΠ΅ Π΅Π³ΠΎ, ΡΡΠΎΠ±Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ ΡΠ»ΠΎΠΆΠΈΠ»ΠΈΡΡ ΡΠ°ΠΌΡΠΌ Π½Π°ΠΈΠ»ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° Π²ΡΡΠ΅ΠΊΠ°ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΎ β ΠΊΠ»ΡΡΠ΅Π²ΠΎΠ΅.
Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ tg 2 Ξ± + 1 = 1/cos 2 Ξ± ΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ 1 + Ρtg 2 Ξ± + 1 = 1/sin 2 Ξ± Π²ΡΠ²ΠΎΠ΄ΡΡ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°, ΡΠ°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π½Π° sin 2 Ξ± ΠΈ cos 2 Ξ±.
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠΎΡΡΠΎΠΌΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Ρ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ. ΠΠΎ ΠΊΠ°ΠΊΠ°Ρ ΠΆΠ΅ Β«ΠΌΠ΅ΡΡΠΈΡΒ» ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΠΎΠΉΡΠΈΡΡ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ². ΠΠΈΠ΄ΠΈΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ β Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°ΠΉΡΠ΅, Π½Π΅ ΡΠ°Π·Π΄ΡΠΌΡΠ²Π°Ρ.
sin 2 Ξ± + cos 2 Ξ± = 1
Π‘ΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
Π§ΡΠΎΠ±Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ, ΠΎΠ±ΡΠ°ΡΠΈΠΌΡΡ ΠΊ ΡΠ΅ΠΌΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΠ΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ β ΡΡΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π Π°Π΄ΠΈΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π»ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ OA1B.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΡΠ²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π°. ΠΠ½Π°Ρ ΠΎΠ΄Π½ΠΎ, Π²Ρ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ Π΄ΡΡΠ³ΠΎΠ΅. ΠΡΠΆΠ½ΠΎ Π»ΠΈΡΡ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΎΡΡΡ ΠΈ ΠΌΠΈΠ½ΡΡ, ΠΈ ΠΏΠ»ΡΡ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ Π½Π΅ Π΄Π°Π΅Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π±ΡΠ» ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΡΠΈΠ½ΡΡ/ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π°.
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² Π·Π°Π΄Π°ΡΠΊΠ°Ρ Ρ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΡΠΆΠ΅ Π΅ΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ. ΠΠ±ΡΡΠ½ΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ β ΡΠΊΠ°Π·Π°Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΡΠ΅ΡΠ²Π΅ΡΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π±Π΅Π· ΡΡΡΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΊΠ°ΠΊΠΎΠΉ Π·Π½Π°ΠΊ Π½Π°ΠΌ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ΅ΡΠ΅Π· ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ
ΠΠ· Π²ΡΠ΅Π³ΠΎ ΡΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠ°ΡΠΈΠ²ΡΡ , Π½ΠΎ Π½Π΅ ΡΠΈΠ»ΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΡΡ ΡΠ»ΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΡ Π΄ΡΡΠ³ΠΎΠ³ΠΎ. Π’Π°ΠΊΠ°Ρ ΡΠ²ΡΠ·Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°ΡΡ Π½ΡΠΆΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ:
ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π·Π°Π΄Π°ΡΡΡΡ sin ΠΈ cos ΡΠ³Π»ΠΎΠ².
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡΡ. Π ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΊ ΡΠΈΠ½ΡΡΡ.
ΠΡΠ΄Π΅Π»ΡΠ½ΠΎ ΡΡΠΎΠΈΡ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π²Π΅ΡΠ½Ρ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ² Ξ±, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π²ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½.
ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ³Π»Π° Ξ±, Π½Π΅ ΡΠ°Π²Π½ΠΎΠ³ΠΎ Ο * z, Π³Π΄Π΅ z β ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ
Π£ΠΆ Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΅ΡΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π΅Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°ΠΌΠΈ, Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ΅ Π±ΠΎΠ»Π΅Π΅ Π½Π°Π³Π»ΡΠ΄Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π’Π°ΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΈ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΏΡΠΈ Π»ΡΠ±ΡΡ ΡΠ³Π»Π°Ρ Ξ±, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΡΠ°Π²Π½ΡΡΡΡΡ Ο/2 * z, Π³Π΄Π΅ z β ΡΡΠΎ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. Π ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ Π±ΡΠ΄ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ.
ΠΠ°ΠΊ ΠΈ Π»ΡΠ±ΠΎΠ΅ Π΄ΡΡΠ³ΠΎΠ΅, Π΄Π°Π½Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Ρ. ΠΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ.
tg Ξ± * ctg Ξ± = 1.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ ΡΠΌΡΡΠ» β ΡΡΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΡΠ»ΠΈ ΡΠΈΡΠ»Π° a ΠΈ b Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ β ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ a β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»Ρ b, Π° ΡΠΈΡΠ»ΠΎ b β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»Ρ a. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»Ρ a ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠΈΡΠ»ΠΎ b, Π° ΡΠΈΡΠ»Ρ b ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΡΠΈΡΠ»ΠΎ a. ΠΠΎΡΠΎΡΠ΅, ΠΈ ΡΠ°ΠΊ, ΠΈ ΡΠ΄Π°ΠΊ.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΡΠΈΠ½ΡΡ
ΠΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° Π²ΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° ΡΠ²ΡΠ·Π°Π½ Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ ΡΠ³Π»Π°, Π° ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β Ρ ΡΠΈΠ½ΡΡΠΎΠΌ.
ΠΡΠ° ΡΠ²ΡΠ·Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½Π°, Π΅ΡΠ»ΠΈ Π²Π·Π³Π»ΡΠ½ΡΡΡ Π½Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°:
Π‘ΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠ°Π²Π½Π° ΡΠΈΡΠ»Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π‘ΡΠΌΠΌΠ° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΡΠ°Π²Π½Π° ΡΠΈΡΠ»Ρ, ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΡΠΈΠ½ΡΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΡΠ²Π΅ΡΡΠΈ ΠΎΠ±Π° ΡΡΠΈΡ
ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°:
sin 2 Ξ± + cos 2 Ξ± = 1.
Π₯ΠΎΡΠΎΡΠΎ Π±Ρ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ² Π½Π°ΠΈΠ·ΡΡΡΡ. Π§ΡΠΎΠ±Ρ ΡΡΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ΅Π±Π΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
sin 2 Ξ± + cos 2 Ξ± = 1
tg 2 Ξ± + 1 =
1 + ctg 2 Ξ± =
Π§ΡΠΎΠ±Ρ ΡΡΠ°ΡΠΈΡΡ Π΅ΡΠ΅ ΠΌΠ΅Π½ΡΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ .
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
Π Π°Π·Π±Π΅ΡΠ΅ΠΌ ΠΏΠ°ΡΡ Π·Π°Π΄Π°ΡΠ΅ΠΊ, Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°. Π Π°ΡΡΠΌΠΎΡΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠΉΡΠ΅ΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ.
ΠΠ°Π΄Π°ΡΠΊΠ° 1. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ cos Ξ±, tg Ξ±, ctg Ξ± ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ sin Ξ± = 12/13.
ΠΠ°Π΄Π°ΡΠΊΠ° 2. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ cos Ξ±,
Π΅ΡΠ»ΠΈ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ sin Ξ±:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, Π·Π°Π΄Π°ΡΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΡΡΠΎ, Π½ΡΠΆΠ½ΠΎ Π»ΠΈΡΡ Π²Π΅ΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ².
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)
ΠΠ°ΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΌΠ°ΡΠ°ΡΠΎΠ½
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ ΠΏΡΠΎΡΡΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ
ΠΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΈΡΠ°ΡΡ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ ΠΈΠ»ΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ½Π΅Ρ ΡΠ°ΠΉΡΠ°Ρ , Π° Π² ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ ΡΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ «Π½Π° ΠΏΠ°Π»ΡΡΠ°Ρ ».
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ°Π±ΠΎΡΡ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π±ΡΠ» ΠΏΡΠΈΠ΄ΡΠΌΠ°Π½ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ (r = 1).
Π’ΠΎΠ³Π΄Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠ°Π΄ΠΈΡΡΠ° Π½Π° ΠΎΡΠΈ X ΠΈ Y (OB ΠΈ OA’) ΡΠ°Π²Π½Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠ, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΡΠ°Π²Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² OCD ΠΈ OC’D’, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΡ OAB.
ΠΠ»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΡΠΌ Π² ΡΠΊΠΎΠ»Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ³Π»Ρ Π² 0Β°, 30Β°, 45Β°, 60Β° ΠΈ 90Β°.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΠΊΠ°ΠΆΠ΄ΡΠ΅ 90Β° ΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ΅Π½ΡΡ Π·Π½Π°ΠΊ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠ³Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ½ΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΠ²ΡΠΎΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ Π±ΠΠ»ΡΡΠΈΡ ΡΠ³Π»ΠΎΠ².
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΠΈ ΠΊΡΡΠ³Π° (0Β° β 90Β°)
ΠΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΠ²ΡΠΎΡΠ° Π·Π½Π°ΠΊΠΎΠ² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π£Π³ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΡΡΠΈΡΠ°Π΅ΡΡΡ ΡΠ³ΠΎΠ», ΠΎΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌΡΠΉ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ.
Π Π²ΠΈΠ΄Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΏΠΎΠ»Π½Π°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 360Β°, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ³Π»ΠΎΠ², ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡΠ°, Π ΠΠΠΠ«.
ΠΠ»Ρ Π»ΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΈ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΠΊΠ΅ΡΠΎΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π° Π½ΠΈΠΆΠ΅. ΠΠ°ΠΆΠΈΠΌΠ°Ρ ΠΊΠ½ΠΎΠΏΠΊΠΈ Β«+Β» ΠΈ Β«βΒ» Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π° Π±ΡΠ΄ΡΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³
Π£Π³Π»Ρ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ
Π§ΡΠΎΠ±Ρ Π·Π°ΠΊΡΠ΅ΠΏΠΈΡΡ ΡΠ²ΠΎΠΈ Π·Π½Π°Π½ΠΈΡ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅Π±Ρ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΡΡΠ΅Π½Π°ΠΆΠ΅ΡΠΎΠΌ Π΄Π»Ρ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ.