Алгебраическое уравнение что это
Алгебраические уравнения
Типы алгебраических уравнений
Типы алгебраических уравнений, в зависимости от степени возведения неизвестного:
У этого типа уравнений есть два возможных решения, которые можно найти с помощью следующей формулы:
Если коэффициенты равны нулю, уравнение завершено. В противном случае он будет считаться неполным.
Еще одна особенность этого типа уравнения заключается в том, что его можно графически представить параболой (как мы увидим в примере ниже).
Пример уравнения
Предположим, у нас есть следующее уравнение:
Его решения или корни будут следующими:
Графическое представление этого уравнения будет следующим:
Другие типы уравнений
Другие типы алгебраических уравнений следующие:
Линейные и квадратные уравнения являются полиномиальными уравнениями.
АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ
Значения неизвестного х, к-рые удовлетворяют уравнению (1), т. е. при подстановке вместо хобращают уравнение в тождество, наз. корнями уравнения (1), а также корнями многочлена
Каждый многочлен f(x).степени n>0 с коэффициентами из поля Римеет в поле Рне более пкорней, считая каждый корень столько раз, какова его кратность (и, значит, не более празличных корней).
В алгебраически замкнутом поле каждый многочлен степени пимеет ровно пкорней (считая их кратность). В частности, это справедливо для поля комплексных чисел.
Разрешимость алгебраических уравнений в радикалах. Всякое А. у. степени, не превосходящей 4, решается в радикалах. Решение задач, приводящихся к частным видам уравнении 2-й и 3-й степеней, можно найти еще в древнем Вавилоне (2000 лет до н. э.) (см. Квадратное уравнение, Кубическое уравнение). Первое изложение теории решения квадратных уравнений дано в книге Диофанта «Арифметика» (3 в. н. э.). Решение в радикалах уравнений 3-Й л 4-Й степенен с буквенными коэффициентами было получено итальянскими математиками в 16 в. (см. Кардано формула, Феррари метод). В течение почти 300 лет после этого делались безуспешные попытки решить в радикалах уравнение с буквенными коэффициентами 5-й и более высоких степеней. Наконец, в 1826 Н. Абель (N. Abel) доказал, что такое решение невозможно.
Современная формулировка теоремы Абеля: пусть (1) Ч уравнение степени с буквенными коэффициентами Ч любое поле и РЧ поле рациональных функций от с коэффициентами из К; тогда корни уравнения (1) (лежащие в нек-ром расширении поля Р) нельзя выразить через коэффициенты этого уравнения при помощи конечного числа действий сложения, вычитания, умножения, деления (имеющих смысл в поле Р) и знаков корня (имеющих смысл в расширении поля Р). Иными словами, общее уравнение степени n>4 неразрешимо в радикалах (см. [3], с. 226).
Теорема Абеля не исключает, однако, того, что каждое А. у. с данными числовыми коэффициентами (или коэффициентами из данного поля) решается в радикалах. Уравнения любой степени пнек-рых частных видов решаются в радикалах (напр., двучленные уравнения). Полное решение вопроса о том, при каких условиях А. у. разрешимо в радикалах, было получено ок. 1830 Э. Галуа (Е. Galois).
Основная теорема Галуа теории о разрешимости А. у. в радикалах формулируется следующим образом: пусть Ч многочлен с коэффициентами из поля K, неприводимый над K; тогда: 1) если хотя бы один корень уравнения выражается в радикалах через коэффициенты этого уравнения, причем показатели радикалов не делятся на характеристику ноля K, то группа Галуа этого уравнения над полем Кразрешима; 2) обратно, если группа Галуа уравнения f(x) = Q над полем Кразрешима, причем характеристика поля K или равна нулю, или больше всех порядков композиционных факторов этой группы, то все корни уравнения представляются в радикалах через его коэффициенты, причем все показатели встречающихся радикалов Ч простые числа, а соответствующие этим радикалам двучленные уравнения неприводимы над полями, к к-рым эти радикалы присоединяются.
Э. Галуа доказал эту теорему для случая, когда К Ч поле рациональных чисел; при этом все условия на характеристику поля K, содержащиеся в формулировке теоремы, становятся ненужными.
Теорема Абеля является следствием теоремы Галуа, так как группа Галуа уравнения степени пс буквенными коэффициентами над полем Ррациональных функции от коэффициентов уравнения с коэффициентами из любого поля КЧ симметрич. группа и при неразрешима. Для любого существуют уравнения степени пс рациональными (и даже целыми) коэффициентами, неразрешимые в радикалах. Примером такого уравнения для может служить уравнение , где рЧ простое число. В теории Галуа применяется метод сведения решения данного А. у. к цепочке более простых уравнений, наз. резольвентами данного уравнения.
Разрешимость уравнений в радикалах тесно связана с вопросом о геометрич. построениях с помощью циркуля и линейки, в частности задача о делении окружности на n равных частей (см. Деления круга многочлен, Первообразный корень).
Алгебраические уравнения с одним неизвестным с числовыми коэффициентами. Для отыскания корней А. у. с коэффициентами из поля действительных или комплексных чисел степени выше 2-й, как правило, используются методы приближенных вычислений (напр., Парабол метод). При этом удобно сначала освободиться от кратных корней. Число с является k-кратным корнем многочлена тогда и только тогда, когда многочлен и его производные до порядка kЧ1 включительно обращаются в нуль при . Если разделить на наибольший общий делитель этого многочлена и его производной, то получится многочлен, имеющий те же корни, что и многочлен , но только первой кратности. Можно даже построить многочлены, имеющие в качестве простых корней все корни многочлена одинаковой кратности. Многочлен имеет кратные корни тогда и только тогда, когда его дискриминант равен нулю.
Часто возникают задачи определения границ и числа корней. За верхнюю границу модулей всех корней (как действительных, так и комплексных) А. у. (1) с любыми комплексными коэффициентами можно взять число
В случае действительных коэффициентов более точную границу обычно дает Ньютона метод. К определению верхней границы положительных корней сводится определение нижней границы положительных, а также верхней и нижней границ отрицательных корней.
Для определения числа действительных корней проще всего применить Декарта теорему. Если известно, что все корни данного многочлена действительны (как, напр., для характеристич. многочлена действительной симметрич. матрицы), то теорема Декарта дает точное число корней. Рассматривая многочлен , можно с помощью этой же теоремы найти число отрицательных корней . Точное число действительных корней, лежащих на данном интервале (в частности, число всех действительных корней) многочлена с действительными коэффициентами, не имеющего кратных корней, можно найти по Штурма правилу. Теорема Декарта является частным случаем Бюдана Ч Фурье теоремы, дающей оценку сверху числа действительных корней многочлена с действительными коэффициентами, заключенных в нек-ром фиксированном интервале.
Иногда интересуются разысканием корней специального вида, так, напр., критерий Гурвица дает необходимое и достаточное условие для того, чтобы все корни уравнения (с комплексными коэффициентами) имели отрицательные действительные части (см. Рауса Ч Гурвица критерий).
Для многочлена с рациональными коэффициентами существует метод вычисления всех его рациональных корней. Многочлен с рациональными коэффициентами имеет те же корни, что и многочлен с целыми коэффициентами, получающийся из умножением на общее кратное всех знаменателей коэффициентов Рациональными корнями многочлена с целыми коэффициентами могут быть только те несократимые дроби вида , у к-рых рЧ делитель числа , а Ч делитель числа (и даже только те из этих дробей, для к-рых при любом целом число делится на ).
Если , то все рациональные корни многочлена (если они у него вообще есть) Ч целые числа, являющиеся делителями свободного члена, и могут быть найдены перебором.
Системы алгебраических уравнений. О системах А. у. 1-й степени см. Линейное уравнение.
Систему двух А. у. любых степеней с двумя неизвестными х и у можно записать в виде:
где Ч многочлены от одного неизвестного х.
Если хпридать нек-рое числовое значение, получится система двух уравнений от одного неизвестного ус постоянными коэффициентами . Результантом этой системы будет следующий определитель:
Справедливо утверждение: число тогда и только тогда является корнем результанта , когда или многочлены и имеют общий корень , или оба старших коэффициента и равны нулю.
Таким образом, для решения системы (3) надо найти все корни результанта , подставить каждый из этих корней в систему (3) и найти общие корни этих двух уравнений с одним неизвестным у. Кроме того, надо найти общие корни двух многочленов и и также подставить их в систему (3) и проверить, не имеют ли полученные уравнения с одним неизвестным уобщих корней. Иными словами, решение системы двух А. у. с двумя неизвестными сводится к решению одного уравнения с одним неизвестным и вычислению общих корней двух уравнений с одним неизвестным (общие корни двух или нескольких многочленов с одним неизвестным являются корнями их наибольшего общего делителя).
Аналогично рассмотренному случаю решается система любого числа А. у. с любым числом неизвестных. Эта задача приводит к громоздким вычислениям. Она связана с так наз. исключения теорией.
Лит.:[1] Курош А. Г., Курс высшей алгебры, 10 изд., М., 1971; [2] Сушкевич А. К., Основы высшей алгебры, 4 изд., М.
В математика, алгебраическое уравнение или полиномиальное уравнение является уравнение формы
где п это многочлен с участием коэффициенты в некоторых поле, часто поле рациональное число. Для большинства авторов алгебраическое уравнение одномерный, что означает, что в нем участвует только один переменная. С другой стороны, полиномиальное уравнение может включать несколько переменных, и в этом случае оно называется многомерный и срок полиномиальное уравнение обычно предпочитают алгебраическое уравнение.
является алгебраическим уравнением с целыми коэффициентами и
является многомерным полиномиальным уравнением над рациональными числами.
Некоторые, но не все полиномиальные уравнения с рациональные коэффициенты есть решение, которое является алгебраическое выражение которые можно найти с помощью конечного числа операций, которые включают только те же типы коэффициентов (то есть могут быть решено алгебраически). Это можно сделать для всех таких уравнений степень один, два, три или четыре; но для степени пять или выше это можно сделать только для некоторых уравнений, не для всех. Большое количество исследований было посвящено вычислению эффективных и точных приближений настоящий или сложный решения одномерного алгебраического уравнения (см. Алгоритм поиска корней) и общих решений нескольких многомерных полиномиальных уравнений (см. Система полиномиальных уравнений).
Содержание
История
Изучение алгебраических уравнений, вероятно, старо, как математика: Вавилонские математики, еще в 2000 г. до н.э. могли решить некоторые виды квадратные уравнения (отображается на Старый вавилонский глиняные таблички).
Направления обучения
Алгебраические уравнения лежат в основе ряда областей современной математики: Алгебраическая теория чисел является изучением (одномерных) алгебраических уравнений над рациональными числами (то есть с рациональный коэффициенты). Теория Галуа был представлен Эварист Галуа определить критерии для решения, можно ли решить алгебраическое уравнение в терминах радикалов. В теория поля, алгебраическое расширение является расширением, в котором каждый элемент является корнем алгебраического уравнения над базовым полем. Трансцендентная теория чисел это изучение действительных чисел, которые не являются решениями алгебраического уравнения над рациональными числами. А Диофантово уравнение представляет собой (обычно многомерное) полиномиальное уравнение с целыми коэффициентами, для которого интересны целочисленные решения. Алгебраическая геометрия это исследование решений в алгебраически замкнутое поле многомерных полиномиальных уравнений.
Потому что синус, возведение в степень, и 1 /Т не являются полиномиальными функциями,
является не полиномиальное уравнение от четырех переменных Икс, у, z, и Т над рациональными числами. Однако это полиномиальное уравнение от трех переменных Икс, у, и z над полем элементарные функции в переменной Т.
Теория
Полиномы
Учитывая неизвестное уравнение Икс
( E ) а п Икс п + а п − 1 Икс п − 1 + ⋯ + а 1 Икс + а 0 = 0 < displaystyle ( mathrm
Можно показать, что многочлен степени п в поле не больше п корни. Следовательно, уравнение (E) имеет не более п решения.
Существование решений вещественных и сложных уравнений
В основная теорема алгебры заявляет, что поле из сложные числа замкнуто алгебраически, то есть все полиномиальные уравнения с комплексными коэффициентами и степенью не менее одной имеют решение.
Связь с теорией Галуа
Существуют формулы, дающие решения действительных или комплексных многочленов степени меньше или равной четырем в зависимости от их коэффициентов. Авель показал, что невозможно найти такую формулу вообще (используя только четыре арифметических действия и извлекая корни) для уравнений пятой степени и выше. Теория Галуа предоставляет критерий, который позволяет определить, можно ли выразить решение данного полиномиального уравнения с помощью радикалов.
Явное решение численных уравнений
Подход
Явное решение действительного или комплексного уравнения степени 1 тривиально. Решение уравнение более высокой степени п сводится к разложению ассоциированного многочлена на множители, т. е. переписыванию (E) в виде
Этот подход применяется в более общем случае, если коэффициенты и решения принадлежат область целостности.
Общие техники
Факторинг
Устранение субдоминирующего термина
( E ) а п Икс п + а п − 1 Икс п − 1 + ⋯ + а 1 Икс + а 0 = 0 < displaystyle ( mathrm
Квадратные уравнения
Если полином имеет действительные коэффициенты, он имеет:
Кубические уравнения
Уравнения четвертой степени
Некоторые кубические и четвертые уравнения могут быть решены с помощью тригонометрия или гиперболические функции.
Уравнения высшей степени
Эварист Галуа и Нильс Хенрик Абель независимо показал, что в общем случае полином степени 5 и выше не разрешим в радикалах. У некоторых конкретных уравнений есть решения, например, связанные с циклотомические многочлены степеней 5 и 17.
Чарльз Эрмит, с другой стороны, показали, что многочлены степени 5 разрешимы с помощью эллиптические функции.
В противном случае можно найти численные приближения к корням, используя алгоритмы поиска корней, такие как Метод Ньютона.
Алгебраические уравнения в математике с примерами решения и образцами выполнения
Делимость многочлена
Делимость многочлена, целого относительно х, на разность x— а.
Теорема Безу:
Многочлен, целый относительно х:
,
при делении на разность х — а (где а есть произвольное число, положительное или отрицательное) даёт остаток
равный тому значению делимого, которое оно получает при х=а.
Доказательство:
Из процесса деления многочлена, расположенного по убывающим степеням буквы х, видно, что деление такого многочлена на х — а можно продолжать до тех пор, пока высший член остатка R не будет содержать в себе буквы х. Пусть при этом частное будет некоторый многочлен Q. Тогда мы можем написать равенство:
M=(x- a)Q+R.
Равенство это есть тождество, т. е. оно верно при всевозможных значениях буквы х, а потому оно должно быть верно и при х-а. Но при x=а оно даёт
M’ = (α — α) Q’ + R
если буквами М‘ и Q‘ обозначим те значения M и Q, которые эти многочлены принимают при х=а (остаток R, как не содержащий вовсе x, не изменится от подстановки а на место х). Так как a — α=0, то и произведение (а — a) Q‘ равно 0; значит, последнее равенство даёт M‘= R, т. е.
что и требовалось доказать.
Следствие:
Так как x+α=x— (—а), то, применяя доказанную теорему к сумме х+а, найдём:
многочлен
при делении на сумму x+α даёт в остатке число, равное
т. е. число, равное тому значению делимого, которое оно получает при x= —а.
Примеры:
1) Многочлен x⁵—3x²+5x—1 при делении на х—2 даёт остаток, равный
2⁵-3 ∙ 2²+5 ∙ 2—1=29.
2) Многочлен x⁵—3x²+5x—1 при делении на x+2 даёт остаток
(-2)⁵-3 (- 2)²+5 (-2)—1=-55.
Следствие:
Для того чтобы многочлен
делился на разность х—а, необходимо и достаточно, чтобы при х=а он обращался в нуль.
Это необходимо, так как если указанный многочлен делится на x—а, то остаток от деления должен быть нуль, а этот остаток, по доказанному выше, есть то значение делимого, которое оно принимает при x=а. Это и достаточно, так как если многочлен обращается в нуль при x=a, то это значит, что остаток от деления этого многочлена на х—а равен нулю.
Следствие:
Для того чтобы многочлен
делился на сумму х+а, необходимо и достаточно, чтобы при х = —а он обращался в нуль, так как сумма х+а есть разность x—(— а).
Примеры:
1) Многочлен x³-4x²+9 делится на х—3, потому что
З³ — 4∙3²+9=0.
2) Многочлен 2x²+x-45 делится на x+5, так как
2 (-5)²+(-5)—45=0.
Делимость двучлена на . 1) Разность одинаковых степеней двух чисел делится на разность тех же чисел, так как при делении на х—а даёт остаток , т. е. 0.
2) Сумма одинаковых степеней двух чисел не делится на разность этих чисел, так как при делении на х—а даёт остаток , а не 0.
3) Разность одинаковых чётных степеней двух чисел делится, а нечётных не делится на сумму этих чисел, так как при делении разности , на х+а остаток равен , что при m чётном равно нулю, а при tn нечётном составляет — .
4) Сумма одинаковых нечётных степеней двух чисел делится, а чётных не делится на сумму этих чисел, так как. при делении суммы на x+α остаток равен что при m нечётном равно 0, а при m чётном составляет .
Примеры:
1) x¹+α¹ делится на x+α, но не делится на х—а.
2) x²- α² делится и на х—а, и на x+a.
3) x²+α² не делится ни на х—а, ни на x+a.
4) x³- α³ делится на х—а, но не делится на x+α.
5) x³+α³ делится на x+a, но не делится на х—а.
Частные, получаемые при делении на . Если произведём деление двучлена на двучлен х—а, то в частном получим многочлен:
(остатки при этом делении идут в такой последовательности: 1-й остаток , 2-й остаток , 3-й остаток ,…, m-й остаток ).
Очевидно, что многочлен, получившийся в частном, содержит m членов; сумма показателей в каждом члене при а и х одна и та же, именно: m—1; показатели х идут, уменьшаясь на 1,от m—1 до 0, показатели же а идут, увеличиваясь на 1, от 0 до m—1; коэффициенты у всех членов равны 1; знаки все +; число членов в частном m.
Заметив это, можем прямо писать:
x³- α³=(x-a) (x²+αx+α²);
x⁴- α⁴=(x-α) (x³+αx²+α²x+ α³);
x⁵ — α⁵=(x-a) (x⁴+αx3+α²x²+α³x+α⁴) и т. п.
Чтобы получить частное от деления на x + a при m чётном или при делении на x+a при m нечётном, достаточно в полученном выше частном заменить а на —а. Таким образом:
x³+α³=(x+α) (x²-αx+α²);
x⁴—α⁴=(x+α) (х³-αx²+α²x-α³);
x⁵+a⁵=(x+α) (х⁴ — αx³+α²x² — a³x+a⁴) и т.п.
Общий вид алгебраического уравнения
Уравнение такого вида называется алгебраическим. Алгебраические уравнения степени выше второй называются уравнениями высших степеней.
Некоторые свойства алгебраического уравнения
Уравнения высших степеней составляют предмет высшей алгебры. Элементарная же рассматривает только некоторые частные виды этих уравнений.
Высшая алгебра устанавливает следующую важную теорему:
Всякое алгебраическое уравнение имеет вещественный или комплексный корень (теорема Гаусса 2), 1799 г.).
Допустив эту истину (доказательство которой в элементарной алгебре было бы затруднительно), нетрудно показать, что:
Алгебраическое уравнение имеет столько корней, вещественных или комплексных, сколько единиц в показателе его степени.
Полезно заметить ещё следующие истины, доказываемые в высшей алгебре.
Сумма корней всякого алгебраического уравнения
равна , а произведение корней равно (примером может служить квадратное уравнение).
Если алгебраическое уравнение с вещественными коэффициентами имеет комплексные корни, то число этих корней — чётное (примером может служить биквадратное уравнение).
Если алгебраическое уравнение с вещественными коэффициентами имеет n корней вида p+qi, оно имеет ещё n корней вида p—qi (примером может служить биквадратное уравнение, комплексные корни которого всегда сопряжённые), и так как
[х—(p+qi)][x-(р— qi)]=[(x-p)- qi] (x-p)+qi] =
=(х—р)²—q²i²=(x-p)²+q²=x²-2 +(p²+q²),
то левая часть уравнения содержит в этом случае n вещественных множителей вида ax²+bx+c.
Алгебраическое уравнение нечётной степени с вещественными коэффициентами имеет, по крайней мере, один вещественный корень.
Уравнения с произвольными буквенными коэффициентами степени не выше четвёртой разрешены алгебраически, т. е. для корней этих уравнений найдены общие формулы, составленные из коэффициентов уравнения посредством алгебраических действий.
В этом смысле уравнения с произвольными коэффициентами степени выше четвёртой не могут быть разрешены алгебраически (теорема Абеля); однако, если коэффициенты уравнения какой угодно степени выражены числами, всегда есть возможность вычислить с желаемой степенью приближения все его корни как вещественные, так и мнимые. Способы такого вычисления излагаются в высшей алгебре.
Методы решения целых алгебраических уравнений
Разложение на множители
Часть целых алгебраических уравнений (или аналогичных неравенств) степени n выше 2-й могут быть решены путём разложения многочлена в левой части уравнения (неравенства) на множители с помощью таких известных приёмов, как группировка и вынесение общего множителя за скобки. Иногда для достижения цели приходится прибавлять и одновременно вычитать одно и то же выражение. Отметим, что порой разложение на множители этим способом требует определённого искусства.
Если разложение на множители удалось выполнить, то решение алгебраического уравнения сводится к решению совокупности нескольких уравнений, но более низкой степени. Неравенство после разложения на множители можно решать методом интервалов.
Пример:
Решить уравнение
Решение:
Из 1-го уравнения находим корни , а второе не имеет решений.
Пример:
Найти все положительные корни уравнения
Решение:
Ответ:
Подбор корня с последующим понижением степени уравнения
При решении алгебраических уравнений и неравенств степени выше второй можно использовать общий принцип последовательного понижения степени уравнения (неравенства).
Пример:
Решить уравнение
Решение:
Заметим, что x = 2 является корнем данного уравнения. Найдём другие корни этого уравнения:
Решая уравнение , находим ещё два корня
Эта ссылка возможно вам будет полезна:
Пример:
Решить уравнение
Решение:
В некоторых случаях, для того чтобы не подбирать корень «вслепую», можно воспользоваться следующим методом.
Метод поиска рациональных корней у многочленов с целыми коэффициентами
причём все коэффициенты алгебраического многочлена являются целыми числами. Поиск рациона-льных корней можно свести к перебору ограниченного количества вариантов. Для этого необходимо, во-первых, найти все целочислен-ные делители свободного члена (их конечное число, однако если этот коэффициент содержит слишком много делителей, то это затрудняет поиск корней в уравнении). Обозначим, например, эти делители через . Во-вторых, следует найти все натуральные делители старшего коэффициента уравнения . Обозначим эти делители через . В-третьих, надо составить всевозможные дроби вида . Наконец, перебирая по очереди все такие дроби, проверить, является ли в действительности каждая из них корнем данного уравнения. Найдя таким образом первый корень , вы или сразу понижаете степень уравнения делением многочлена на разность , (причём в силу следствия из теоремы Безу обязательно разделится нацело на этот линейный двучлен) и получаете некоторый многочлен степени на единицу меньшей, чем первоначальная. Или, перебирая все дроби, находите все рациональные корни и уже затем понижаете степень уравнения сразу на столько порядков, сколько рациональных корней удалось найти, и ищете оставшиеся иррациональные корни. В любом случае задача сводится к решению уравнения более низкой степени.
Пример:
При каких натуральных n уравнение имеет рациональные корни?
Решение:
Воспользуемся приведённым выше методом. Свободный член имеет два целочисленных делителя: ± 1, а старший коэффициент — два натуральных делителя: 1,2. Поэтому рациональные корни следует искать среди чисел Подставим их поочерёдно в уравнение.
Ответ:
Метод неопределённых коэффициентов
Иногда для решения целых алгебраических уравнений (неравенств) с одной или несколькими неизвестными используют метод неопределённых коэффициентов. Пусть, например, решается уравнение
Суть метода состоит в том, что многочлен в левой части уравнения представляется в виде произведения линейных и(или) квадратичных сомножителей с неизвестными (неопределёнными) коэффициентами Чтобы найти эти коэффициенты, раскрывают скобки в указанном произведении и приводят образовавшийся при этом многочлен к стандарт-ному виду. Так как два многочлена и одной степени тождественно равны тогда и только тогда,
когда равны коэффициенты при одинаковых степенях переменной x, то, приравнивая эти коэффициенты, получают систему уравнений относительно неизвестных коэффициентов. Эту систему решают (или подбирают любое решение). Найденные таким способом коэффи-циенты становятся определёнными и их значения подставляются в исходное разложение. К недостаткам метода можно отнести то, что получаемая система уравнений для нахождения коэффициентов может оказаться громоздкой и трудной даже в подборе решения.
Рассмотрим применение этого метода на примере решения кубического уравнения. Допустим, требуется решить уравнение
Известно, что многочлен третьей степени всегда можно представить в виде произведения многочленов первой и второй степеней. Таким образом, сразу для всех действительных значений переменной x должно выполняться равенство
где числа а,b,c являются в данном случае искомыми неопределён-ными коэффициентами. Найдём их значения. После этого останется подставить их в правую часть (1) и, приравняв её к нулю, решить уравнение для нахождения всех корней уравнения.
Чтобы найти коэффициенты а,b,c, раскроем скобки в правой части тождества (1) и приведём образовавшийся при этом многочлен к стандартному виду
решая которую (можно даже просто подобрать любое решение этой системы) находим коэффициенты.
Пример:
Решить уравнение
Решение:
Воспользуемся для решения методом неопределённых коэффициентов. Будем искать разложение многочлена, стоящего в левой части уравнения, в виде
Раскрыв скобки, приведём многочлен в правой части к стандартному виду
Приравнивая коэффициенты слева и справа при ,и свободные члены, получаем в итоге систему трёх уравнений с тремя неизвестными коэффициентами а,b,c:
Найдя подбором решение подставим найденные коэффициенты в разложение (2). Таким образом, исходное уравнение приобретает вид Оно имеет три корня
Пример:
При каких значениях а все корни уравнения являются корнями уравнения
Решение:
Чтобы первое из уравнений имело корни, необходимо, чтобы его дискриминант был неотрицателен, т.е.
Метод умножения на функцию
Иногда, применяя приём умножения обеих частей уравнения (неравенства) на некоторую функцию, удаётся упростить уравнение (неравенство).
Пример:
Решить уравнение
Решение:
Заметим, что x = — 1 (и вообще никакое отрицательное число) не является корнем данного уравнения. Домножим обе части данного уравнения на выражение (х +1). Получаем уравнение-следствие
Ответ: уравнение не имеет решений.
Рассмотрим некоторые виды целых алгебраических уравнений, решаемые в основном при помощи специально подобранных подстановок.
Понятие алгебраического и трансцендентного уравнения и методов их приближенного решения
Введем понятия алгебраического и трансцендентного уравнения.
Алгебраическое уравнение — уравнение, в котором переменная находится в основании степени с рациональным показателем.
Примерами алгебраических уравнений могут служить уравнения вида: , .
Уравнение, содержащее неизвестную переменную под знаком логарифма, тригонометрических функций, обратных тригонометрических функций или в показателе степени некоторого числа, называется трансцендентным.
Примерами трансцендентных уравнений могут служить уравнения вида:
Решить предложенное уравнение — значит найти все значения переменной , обращающие его в верное тождество (корни уравнения), или доказать, что корней нет.
Из курса алгебры нам известны методы и приемы решения некоторых видов алгебраических и трансцендентных уравнений: например, квадратных уравнений; уравнений, решаемых методом группировки и вынесения за скобки общего множителя. Но даже решение несложного кубического уравнения вызовет у нас определенные сложности. Если нс удастся решить заданное уравнение привычными способами, существуют методы приближенного решения уравнений, состоящие из двух этапов:
1. отделение корней;
2. уточнение корней до заданной степени точности с помощью одного из следующих методов:
Этап отделения корней необходим для того, чтобы определить, какому промежутку принадлежат корни уравнения. На этом этапе обычно используется графический способ.
Пример:
Определить промежуток, которому принадлежат корни уравнения .
Решение:
Преобразуем данное уравнение к виду: .
Построим графики функций и (рис. 46.1).
— кубическая парабола, строится по таблице значений:
— прямая, строится по двум точкам:
По рисунку видим, что графики функций и пересекаются в единственной точке , координата которой принадлежит отрезку . Следовательно, уравнение имеет ровно один корень на промежутке .
Ответ: .
Эта лекция взята с главной страницы на которой находится курс лекций с теорией и примерами решения по всем разделам высшей математики:
Другие лекции по высшей математике, возможно вам пригодятся:
Алгебраические уравнения и их геометрическое истолкование
Уравнение с одной буквой (неизвестным)
Один из основных вопросов, которыми занимается алгебра, заключается в решении уравнений нормального вида. Так называются уравнения, у которых в левой части стоит многочлен, расположенный по степеням неизвестной буквы, а в правой части — нуль.
Степень многочлена в левой части носит название степени уравнения.
Мы встречались не раз с уравнениями, которые не имели нормального вида: таковы, например, уравнения , , .
Подобного рода уравнения могут быть приведены к уравнениям нормального вида. Для этого до статочно освободиться от дробей, затем перенести на лево члены, стоящие в правой части, сделать приведение подобных членов и, наконец, правильно расположить члены.
Таким образом, привести заданное уравнение к уравнению нормального вида удается по большей части несложными приемами.
Напротив, нахождение всех корней уравнения представляет собою более трудную задачу, в особенности в том случае, если уравнение высокой степени.
Уравнение первой степени (линейное) имеет вид .
Уравнение второй степени (иначе квадратное) имеет вид .
Уравнение третьей степени (иначе кубическое) имеет вид .
Так можно продолжать и дальше. Ради единообразия неизвестное здесь обозначено буквой ; коэффициенты же , и т. д. — известные числа. В уравнении нормального вида старший коэффициент, конечно, следует считать отличным от нуля.
Уравнение первой степени мы решаем (см. гл. 6) следующим образом: свободный член переносим направо , затем делим уравнение на коэффициент при : .
В случае уравнений второй степени или высших степеней решение уравнения тесно связано с разложением левой части на линейные множители. Так, например, уравнение можно переписать в виде ; далее сошлемся на теорему: если произведение двух множителей равно нулю, то непременно один из множителей равен нулю. Поэтому или или ; значит, или или . Обратно, если или , то или первый множитель равен нулю или второй; но в обоих случаях произведение равно нулю, т. е. уравнение удовлетворяется. Итак, уравнение имеет два корня: и .
В отдельных примерах нам удавалось разлагать трехчлен второй степени на линейные множители; более полно общий прием разложения (по средствам «выделения квадрата») будет рассмотрен в главе 12.
Что касается уравнений третьей, четвертой и высших степеней, то, не говоря об отдельных частных случаях, разложить их левую часть на множители весьма трудно. С другой стороны, очень просто можно составить уравнение, имеющее наперед заданные корни; при этом степень уравнения в точности будет равняться числу корней.
Например, пусть заданы три числа: , и ; тогда уравнение, имеющее эти числа (и только их) своими корнями, таково: , или .
Производя умножение, получаем окончательно: .
Можно доказать, что число корней уравнения никогда не превышает его степени. Но иногда оно бывает меньше степени уравнения.
Например, уравнение — третьей степени, но имеет только один корень . Это сразу видно, если в левой части вынести за скобку (здесь второй множитель ни при каком значении не обращается в нуль).
Совокупность точек на числовой оси, являющихся корнями уравнения (иначе, удовлетворяющих этому уравнению), дает нам геометрическое представление этого уравнения.
Уравнение с двумя буквами (переменными)
Нам хорошо известно, что решением (корнем) уравнения с одной неизвестной буквой называется всякое значение входящей буквы, удовлетворяющее уравнению.
Если уравнение содержит две неизвестные буквы, понятие решения должно быть обобщено и именно следующим образом: решением уравнения с двумя неизвестными буквами называется пара значений двух неизвестных, удовлетворяющая уравнению.
Так, пара чисел есть решение уравнения ; то же можно сказать о паре чисел ; но, например, пара не есть решение.
В случае уравнения с двумя неизвестными найти и перечислить все решения, как правило, невозможно. Уже простейшие примеры, вроде или , показывают, что такое уравнение может иметь бесконечное множество решений.
Поэтому, если в уравнение входят две (или более) неизвестных буквы, их называют обыкновенно не неизвестными, а переменными (переменными величинами).
Алгебраическое уравнение с двумя буквами считается нормальным, если в правой части стоит нуль, а в левой — многочлен, расположенный по обеим буквам.
Уравнения с двумя буквами (как и уравнения с одной буквой) классифицируются по степеням: степенью уравнения называется степень многочлена, стоящего в его левой части, причем обе буквы считаются главными.
Уравнения первой степени (линейные) имеют вид .
Уравнения второй степени (квадратные) имеют вид .
Отдать себе отчет в том, какова совокупность решений данного уравнения, нам помогает геометрическое представление уравнения: оно делает наглядной ту зависимость, которая существует между значениями букв, удовлетворяющими уравнению. Познакомимся ближе с этим геометрическим представлением.
Так как у нас имеется не одна, а две буквы, допустим, и из которых каждая может принимать различные значения, то уже нельзя обойтись числовой прямой, а необходимо прибегнуть к числовой (координатной) плоскости. Проведем на листе клетчатой бумаги горизонтальную ось и вертикальную ось масштабы на осях будем брать одинаковые. Каждая пара значений букв изображается, как нам известно, некоторой определенной точкой плоскости , именно — точкой с абсциссой и ординатой . Поэтому совокупность всех пар значений , удовлетворяющих уравнению, изображается также не которой совокупностью (геометрическим местом) точек на плоскости . Эта совокупность и дает геометрическое представление решений нашего уравнения; она называется графиком уравнения. Итак, график уравнения есть совокупность всех тех точек координатной плоскости, координаты которых удовлетворяют уравнению.
Пример:
Рассмотрим уравнение .
Его графиком является совокупность точек , у которых абсцисса равна ординате легко понять, что все такие точки лежат на биссектрисе первого и треть его координатных углов: эта биссектриса и представляет собой график нашего уравнения.
Пример:
Второй пример возьмем более сложный. Пусть нам дано уравнение второй степени: .
Посмотрим, как можно наметить его график.
Ничего не стоит решить уравнение относительно буквы :
Дальше можно составить табличку числовых значений переменной , соответствующих заранее назначенным значениям переменной :
Черт. 39
Каждую полученную точку сейчас же отмечают на черте же. Точки располагаются с известной правильностью.
Чертеж 39 показывает, что при возрастании значений от до значения также возрастают от до ; затем при дальнейшем возрастании от до значения убывают от до . При получаем уже отрицательное значение: , придется поставить точку ниже оси .
При получаем ; и еще дальше значения быстро убывают (в алгебраическом смысле).
Можно букве давать и отрицательные значения; например, при будем иметь и т. д.
Полезло убедиться, что точки, получающиеся при подстановке дробных значений , не нарушают общей правильности в расположении точек графика (например, при получаем ).
Поставим себе еще и такой вопрос: имеет ли наш график какие-нибудь точки на оси , кроме двух, уже найденных? Чтобы получить ответ, достаточно в уравнении положить и решить полученное уравнение относительно . Мы получаем два корня: и . Иных корней нет. Значит, график пересекается с осью только в двух, уже ранее найденных точках.
Хотя мы отметили на чертеже не свыше десятка точек, положение которых нам известно вполне точно, тем не менее правильность их расположения не оставляет сомнений в том, что все остальные, не отмеченные нами, точки графика лежат на некоторой плавной кривой, проходящей через отмеченные точки.
Эта кривая и есть график нашего уравнения. Провести ее от руки не представит труда.
Правда, полученная таким образом кривая даст возможность лишь приближенно судить о положении тех точек графика, координаты которых не были вычислены.
Использованный нами прием получения графика носит название построения графика по точкам.
Постараемся дать описание этого приема, не связывая его с каким-либо определенным примером. Пусть дано некоторое уравнение, содержащее буквы и , мы хотим знать, каков его график.
Посмотрим, существуют ли такие точки графика, которые имеют заранее назначенную абсциссу, скажем, . Чтобы ответить на этот вопрос, достаточно подставить в уравнение вместо буквы число и решить полученное уравнение (содержащее теперь уже только одну букву) относительно буквы . Корни этого уравнения дают нам ординаты всех точек графика, имеющих абсциссу , т. е. лежащих на одной и той же вертикальной прямой, отстоящей вправо от оси на расстоянии . Продолжая поступать таким же образом, т. е. давая абсциссе другие, заранее назначенные, значения, например, можно найти все точки графика, расположенные на других вертикальных прямых. Обыкновенно поступают именно таким образом; при этом стараются облегчить себе работу тем, что предварительно решают данное уравнение относительно буквы , т. е. приводят его к такому виду, чтобы в левой части была одна буква , а правая зависела только от , но не от , Тогда нахождение точек графика сводится к выполнению числовых подстановок в правой части уравнения.
Разумеется, можно было бы также решить данное уравнение относительно буквы и затем придавать ряд значений букве .
Примечание:
Иные уравнения — таковы, что не существует ни одной точки, координаты которой удовлетворяли бы уравнению.
Тогда график отсутствует или представляет собою «пустое место».
Этим свойством обладает, например, уравнение которого левая часть всегда положительна.
В редких случаях график может оказаться состоящим из одной точки или нескольких точек (в конечном числе). Так, уравнение удовлетворяется только одной парой значений , .
Действительно, каждый из квадратов и может быть или положительным числом, или нулем, но никак не отрицательным числом, сумма же равна нулю только в том случае, если и одновременно равны нулю. Следовательно, весь график сводится к одной точке — началу .
Линейное уравнение с двумя переменными
На чертеже 40 изображен график уравнения (1)
Это — прямая линия, проходящая через начало координат и расположенная в первой и третьей четвертях.
Уравнение показывает, что величина у прямо пропорциональна величине . Желая найти все точки графика с целыми координатами, мы даем букве значения, кратные , и получаем точки: , , и т. д.
Черт. 40
Эти точки отмечены на чертеже. Чтобы перейти от одной такой точки к следующей (считая вправо), достаточно отсчитать « клеточек вправо и — вверх».
Коэффициент пропорциональности позволяет
таким образом, определить направление нашей прямой.
Если бы вместо уравнения (I) было задано, например, уравнение
, (2) то мы получили бы точки графика (с целыми координатами): , , и т. д.; отмечая их одну за другой, мы отсчитывали бы « клетки вправо, — вверх», Рассмотрим еще уравнение (3).
При значениях , кратных , получаем точки: , , и т. д.
Отсчитывать нужно « клеток вправо и — вниз». Прямая, являющаяся графиком этого уравнения, расположена во второй и в четвертой четвертях. Из наших примеров можно сделать следующие общие заключения. Графиком уравнения вида (4) является прямая линия, проходящая через начало . Придавая уравнению вид , мы убеждаемся, что коэффициент пропорциональности представляет собою отношение ординаты любой точки графика к ее абсциссе. Если , то прямая проходит в первой и третьей четвертях; если , то во второй и четвертой. При уравнение принимает вид , и графиком тогда является ось .
Чем меньше по абсолютному значению, тем более полого расположена прямая (т. е. тем меньше острый угол, образованный ею с горизонтальной осью); напротив, чем больше по абсолютному значению, тем более круто расположена прямая (тем упомянутый острый угол ближе к прямому).
Коэффициент в уравнении (4) называется наклоном прямой, являющейся графиком этого уравнения.
Обратим внимание на то, чем график уравнения отличается от графика уравнения . При каждом данном значении абсциссы соответствующая ордината увеличена на единиц (, или ); значит, получается снова прямая линия, но «сдвинутая» на единиц в направлении оси : она уже не проходит через начало , а пересекает ось в точке .
Таким образом, направление прямой то же, что и направление прямой : оно зависит от коэффициента при в уравнении прямой, решенном относительно (называемого и в этом случае наклоном прямой).
Другими словами, прямые и параллельны.
На черт. 41 изображен график уравнения . Это — прямая, параллельная прямой , но образующая на оси отрезок, равный .
Черт. 41
Пусть буква обозначает какое угодно число. Постараемся уяснить себе, каков график уравнения .
Нам нужно установить, какова совокупность точек на плоскости , координаты которых удовлетворяют уравнению. Уравнение не удовлетворяется, если значение абсциссы не равно ; если же оно равно , то, како во бы ни было значение ординаты , уравнение удовлетворяется. Это значит, что уравнению удовлетворяют координаты любой точки на прямой, параллельной оси и отстоящей от этой оси вправо на расстоянии .
Итак, уравнение вида имеет графиком прямую, параллельную оси . Точно так же уравнение вида имеет графиком прямую, параллельную оси .
Действительно, если буква на самом деле входит в уравнение (это значит, что не равно нулю), то не представляет труда решить уравнение относительно . Мы получим: и далее, деля все уравнение на , полагая затем
приходим к уравнению вида
, которое, как нам уже известно, изображается прямой линией.
Если же буква отсутствует в уравнении (т. е., если ), то тогда уравнение можно решить относительно буквы (раз , то, по предположению, ), и мы получим: или (где для краткости положено ). Графиком такого уравнения является совокупность точек, имеющих абсциссу ; это также прямая, но уже параллельная оси .
Рассматривать случай, когда не представляет интереса. В этом случае, если , заданное уравнение не удовлетворяется ни при каких значениях и и, значит, график этого уравнения представляет собою «пустое место»; если же , то напротив, уравнение удовлетворяется при всех значениях и тогда его «график» — вся плоскость.
Раз известно, что линейное уравнение изображается прямой линией, то для того, чтобы начертить эту линию на координатной плоскости (на листе клетчатой бумаги), нет необходимости в больших вычислениях.
В самом деле, прямая определяется двумя точками: значит, достаточно сделать две числовые подстановки.
Проще всего установить точки пересечения прямой с осями и . Пусть, например, дано уравнение . Полагая , получим уравнение относительно : , из которого следует, что . Таким образом, найдена точка графика , лежащая на оси . Полагая , получим таким же образом: , откуда следует, что . Итак, найдена точка графика , лежащая на оси . Затем остается провести прямую через точки и .
Указанный прием неудобен только в том случае, если точки и находятся очень близко одна от другой, т. е. близки к началу ; он непригоден вовсе, если график проходит через начала . В этих случаях следует делать какие-нибудь другие подстановки.
Например, чтобы построить график прямой , заметим прежде всего, что она проходит через начало ; чтобы получить еще одну точку, положим и получим ; итак, прямая проходит через точку .
Нелинейные уравнения с двумя переменными
Мы видели, что если заданное уравнение — линейное (т. е. первой степени) относительно букв и , то его график — прямая линия.
Дальнейшие примеры покажут, что если заданное уравнение — не линейное (т. е. степени второй или выше) относительно букв и , то его графиком являются кривые линии.
Степень уравнения относительно букв и называется порядком соответствующей кривой.
Мы рассмотрим здесь только несколько наиболее простых и важных примеров кривых, преимущественно второго порядка.
Пример:
С этим уравнением мы уже встречались. Оно говорит о том, что переменные величины и обратно пропорциональны.
Можно ли решить уравнение относительно ? Ответ — утвердительный, если только имеет значение, не равное нулю. Но легко понять, что при никакое значение не может удовлетворить уравнению: это значит геометрически, что на оси нет ни одной точки графика.
Итак, пусть теперь . Решим уравнение относительно у: .
Это равенство свидетельствует, что есть «величина, обратная величине ». Посмотрим, как изменится величина, обратная , при изменении самого .
Ограничиваясь пока положительными значениями величины , станем составлять табличку и одновременно отмечать точки на чертеже. Ясно, что с увеличением величина убывает, приближаясь к нулю. Но значения она не принимает.
Попробуем взять и дробные значения :
Получающиеся на чертеже точки имеют правильное расположение: через них можно с уверенностью про вести плавную кривую. Менее ясно пока, как вести кривую влево, в промежутке от до . Продолжим табличку:
и станем отмечать новые точки. Теперь становится ясно, что с убыванием положительных значений величина возрастает и притом не ограничено. Именно, примет какое угодно большое значение, если только значение будет достаточно малым. Кривая (при движении справа налево) поднимается вверх, примыкая к оси , хотя, как мы видели, с этой осью общих точек не имеет (см. черт. 42).
Черт. 42
Вся полученная кривая расположена в первой четверти. Если бы мы пожелали давать букве отрицательные значения, то, составляя соответствующую таблицу и при этом производя деление по известным правилам, получили бы в третьей четверти другую «ветвь» кривой.
Обе «ветви». рассматриваемые совместно, образуют кривую, называемую «гиперболой».
Гипербола — кривая второго порядка.
Пример:
Подставляя положительные значения , получаем таблицу:
Отметив соответствующие точки на чертеже, мы видим, что при увеличении абсциссы ордината очень быстро возрастает, причем сам график (если попробовать его провести) все больше выпрямляется. Напротив, ближе к началу он довольно сильно искривлен. Подставляя еще значения , , , мы получим:
В первой клеточке сделаем подстановки даже через одну десятую:
Последняя табличка позволяет заключить, что. под ходя к началу . график тесно примыкает к оси , касается ее.
Обращаясь к отрицательным значениям , мы видим, что при возведении в квадрат отрицательного числа знак минус будет уничтожаться. Отсюда ясно, что кривая продолжается из первой четверти во вторую симметрично относительно вертикальной оси.
Черт. 43
Полученная кривая носит название параболы(см. черт. 43).
Парабола — кривая также второго порядка.
Пример:
При подстановке больших значений , как показывает следующая таблица, кубы возрастают гораздо быстрее, чем квадраты:
Напротив, при подстановке значений, близких к нулю, кубы убывают быстрее, чем квадраты:
Поэтому кривая с возрастанием поднимается вверх гораздо круче, чем парабола ; и при убывании до нуля гораздо теснее примыкает к оси .
На параболу эта кривая не похожа еще и в том отношении, что у нее отсутствует вертикальная ось симметрии; но имеется центр симметрии в начале . Это зависит от того, что при возведении в куб отрицательного числа его абсолютное значение возводится в куб, но знак остается отрицательный.
Общий вид кривой (кубической параболы) показан на черт. 44.
Черт. 44
Это — кривая третьего порядка.
Алгебраические уравнения и алгоритм их решения
Общая теория уравнений
Тождества:
Введем понятие тождественного равенства функций на числовом множестве X.
Пусть функции у = f(х) и у = F(х) имеют области определения А и В соответственно, и X является подмножеством как A, так и В (но не обязательно совпадает с пересечением А и В). Тогда функции у = f(х) и у = F(х) определены на X.
Функции у=f(х) и у=F(х) называются тождественно равными на числовом множестве X, если для любого числа х из X выполняется равенство f(х)=F(х). В этом случае говорят, что равенство f(х)=F(х) является тождеством на множестве X.
не имеет места, так как при этих значениях |x|= — х.
Совершенно так же определяется понятие тождественного равенства для функций нескольких переменных. Например, функции переменных х и у тождественно равны на множестве всех значений этих переменных: для любых значений х и у выполняется равенство
Область допустимых значений
Тождественные преобразования многочленов и алгебраических дробей изучались в начальной алгебре, и мы не будем подробно останавливаться на этом вопросе. Разберем лишь вопрос об области допустимых значений функционального равенства. Пусть дано равенство вида
Например, для тождества
областью допустимых значений является совокупность всех действительных чисел, из которой исключены числа 2 и 4 (при х=2 не определена функция , а при х=4 — функция ).
справедливое для всех без исключения значений х.
Уравнения
Обычно когда даны две функции у=f(х) и у=F(х), то неизвестно, каково множество, на котором эти функции тождественно равны. Поэтому возникает следующая задача: найти все значения х, для которых выполняется равенство
Итак, уравнение f(x) =F(х) выражает задачу об отыскании таких значений переменного х, при которых функции f(x) и F(x) имеют одинаковые значения. Решить уравнение — это значит найти все такие значения х, т. е. все корни (решения) уравнения.
Областью допустимых значений для уравнения (1) называют множество всех х у при которых определены обе функции у=f(х) и у=F(х). Например, для уравнения
область допустимых значений определяется условиями:
Область допустимых значений может заранее ограничиваться некоторыми условиями. Например, могут иметь смысл лишь положительные или лишь целые корни. В этом случае надо рассматривать уравнение лишь для положительных (или целых) значений х.
Тогда мы считаем, что функции f(x) и F(х) заданы на некотором множестве X, и рассматриваем уравнение лишь на этом множестве.
Пусть даны два уравнения
Обозначим множество корней уравнения (1) через M, а множество корней уравнения (2) через N. Если (то есть, если всякий корень уравнения (1) является корнем уравнения (2)), то уравнение (2) называют следствием уравнения (1). Например, уравнение является следствием уравнения 2х—6= 0. В самом деле, корнем уравнения 2х — 6=0 является х=3, а при этом значении многочлен обращается в нуль.
Если множества М и N корней уравнений (1) и (2) совпадают, то эти уравнения называются равносильными. Иными словами, уравнения
равносильны, если всякий корень уравнения (2) является корнем уравнения (3) и, обратно, всякий корень уравнения (3) является корнем уравнения (2).
В частности, уравнения равносильны, если множества М и N — пусты, то есть если каждое из уравнений не имеет решений.
Если уравнения (2) и (3) равносильны, то каждое из них является следствием другого.
Следует отметить, что понятие равносильности уравнений существенно зависит от того, какие значения корней считаются допустимыми. Рассмотрим, например, уравнения:
Корнями первого уравнения является число х=3, а второго — числа Так как эти множества различны, то уравнения (4) и (5) не являются равносильными. Но если рассматривать лишь рациональные значения корней уравнения, то уравнения (4) и (5) оказываются равносильными — ибо они имеют по единственному рациональному корню х = 3. Как правило, мы будем в дальнейшем рассматривать равносильность относительно множества всех действительных чисел. Иными словами, уравнения будут считаться равносильными, если они имеют одни и те же действительные корни.
Совокупности уравнений
Пусть задано несколько уравнений
и требуется найти все значения х, которые удовлетворяют хотя бы одному из этих уравнений. Тогда говорят, что задана совокупность уравнений, а такие значения х называют решениями или корнями этой совокупности. Следует различать совокупность уравнений и систему уравнений — для системы уравнений требуется искать значения неизвестных, которые удовлетворяют всем уравнениям, а для совокупности — хотя бы одному из уравнений.
Чтобы отличать совокупность уравнений от системы уравнений, мы будем обозначать совокупность квадратными скобками, а систему — фигурными скобками.
имеет одно решение , а совокупность тех же уравнений
имеет три решения
Обозначим множество решений уравнения через а множество решений совокупности уравнений (1) через N. Тогда Например, множество решений совокупности
состоит из чисел 2, 3 (решений уравнения 1, —1 (решений уравнения ) и —7 (решения уравнения Число х=3 является решением, хотя при этом значении не определена функция
Две совокупности уравнений
называются равносильными, если они имеют одно и то же множество корней.
Например, совокупности уравнений
равносильны — их корнями являются числа 2, —2 и —3.
Преобразования уравнений
При решении уравнений мы переходим от одного уравнения к другому, пока не придем к уравнению вида х = а или совокупности уравнений такого вида. Возьмем, например, уравнение
Прибавляя к обеим частям этого уравнения (—Зх+3) и приводя подобные члены, получаем уравнение
А теперь умножим обе части уравнения (2) на и получим, что
В процессе решения этого уравнения мы прибавляли к обеим частям уравнения некоторое алгебраическое выражение (а именно, —Зх+3), умножали обе части уравнения на одно и то же число (а именно, на). Кроме того, мы выполняли тождественные преобразования. Заметим, что уравнения (1), (2) и (3) имели одно и только одно решение х = 2. Таким образом, все проведенные преобразования приводили к уравнениям, равносильным первоначальному уравнению (1), имевшим с ним одно и то же решение.
Однако не всегда одинаковые преобразования обеих частей уравнения приводят к уравнению, равносильному первоначальному. Рассмотрим уравнение:
Его решением является х = 3. Если же мы умножим обе части уравнения на х — 2, то получим уравнение:
Это уравнение, кроме решения х=3, имеет еще решение х= 2— оно имеет лишний корень по сравнению с (4).
С другой стороны, если мы возьмем уравнение (5), имеющее решения х=2, х=3, и «сократим» его на х — 2 (то есть разделим обе части уравнения на х — 2), то получим уравнение 2х+1= =х+4 с единственным решением х=3. Значит, здесь мы в процессе решения потеряли корень х=2.
Не является «безобидным» и прибавление к обеим частям уравнения одного и того же алгебраического выражения. Например, уравнение
имеет решение х =2. Но если прибавить к обеим частям этого уравнения выражение , то получим уравнение
для которого х =2 не является решением — обе части этого уравнения не имеют смысла при х=2. Таким образом, произошла потеря решения.
Эти примеры наглядно показывают, что при преобразовании уравнений необходима осторожносгь — неправильно преобразуя уравнение, мы можем как приобрести лишние решения, так и потерять решения данного уравнения. При этом надо иметь в виду, что приобретение лишних решений не столь опасно, как потеря существующих. Ведь после того, как уравнение решено, можно подставить все найденные решения в заданное уравнение и отобрать те из решений, которые ему удовлетворяют. А потерянные решения восстановить уже нельзя.
Из изложенного видно, что, прежде чем решать конкретные виды уравнений, надо познакомиться с общей теорией уравнений, выяснить, какие преобразования приводят к равносильным уравнениям, какие дают посторонние решения, а при каких решения могут быть потеряны. Только после этого мы сможем решать уравнения «с открытыми глазами».
Теоремы о равносильности уравнений
Сформулируем сначала условия, при которых одно уравнение является следствием другого уравнения. Потом из этих условий будут получены условия равносильности уравнений.
Теорема:
Если к обеим частям уравнения
прибавить функцию имеющую смысл при всех допустимых значениях неизвестного х, то получится новое уравнение
являющееся следствием данного.
Доказательство:
В самом деле, пусть а—корень уравнения (1). Тогда f(а)=F(а). Но является некоторым числом, так как по условию функция определена для всех допустимых значений х и, в частности, при х=а. Прибавим к обеим частям числового равенства f(a)=F(а) число . Получим равенство
которое показывает, что число а является корнем уравнения (2). Таким образом, всякий корень уравнения (1) является корнем уравнения (2), то есть уравнение (2) является следствием уравнения (1).
Условие, что функция определена при всех допустимых значениях х, существенно. Если не определено при х=а, где а — решение уравния (1), то уравнение (2) не является следствием уравнения (1) и уравнения (1) и (2) неравносильны: х = а является решением для (1), но не является решением для уравнения (2). Примером могут служить уравнения (6) и (7) из п. 5.
Прибавление к обеим частям уравнения одного и того же выражения не может привести к приобретению посторонних корней, если это прибавление не сопровождается приведением подобных членов или иными преобразованиями, меняющими область определения уравнения (например, сокращением дробей). Рассмотрим, например, уравнение
Если прибавить к обеим частям — и привести подобные члены, то получим уравнение Зх +1= 9 — х, имеющее решение х = 2. Это решение не принадлежит области определения исходного уравнения и потому не удовлетворяет ему.
Перейдем к вопросу об умножении обеих частей уравнения на одно и то же выражение.
Теорема:
Если обе части уравнения
умножить на функцию , имеющую смысл при всех допустимых значениях х, то получится новое уравнение
являющееся следствием уравнения (3).
Доказательство.
Пусть а — корень уравнения (3). Тогда справедливо равенство f(а)=F(а). Умножим обе части этого равенства на число . Мы получим числовое равенство Оно показывает, что а является корнем и уравнения (4). Таким образом, всякий корень уравнения (3) является корнем уравнения (4), то есть (4) — следствие (3).
Из доказанных теорем следует, например, что уравнение
является следствием уравнения
Действительно, уравнение (5) получается из уравнения (6) прибавлением к обеим частям функции Зх+2 и умножением полученного уравнения на х + 2.
Многочлены определены при всех значениях х. Поэтому прибавление к обеим частям уравнения многочлена, равно как и умножение обеих частей
уравнения на многочлен, приводит к уравнению, являющемуся следствием исходного.
Оговорка о том, что должно иметь смысл при всех допустимых значениях х, существенна для справедливости теоремы 2. Рассмотрим, например, уравнение
и умножим обе части этого уравнения на Мы получим уравнение Оно уже не является следствием исходного: уравнение (7) имеет корни 2 и 3, а уравнение — лишь корень 3. Причиной потери корня явилось то, что функция не определена при х = 2, а это значение как раз является корнем заданного уравнения.
Докажем теперь теоремы о равносильности уравнений. Чтобы доказать равносильность двух уравнений, надо показать, что пер вое из них является следствием второго, а второе — следствием первого.
Теорема:
Если функция определена при всех допустимых значениях неизвестного х, то уравнения
Доказательство:
Мы уже видели, что при условии теоремы уравнение (9) является следствием уравнения (8). Но уравнение (8) в свою очередь получается из уравнения (9) прибавлением к обеим частям функции — и приведением подобных членов.
Так как функция определена при всех допустимых значениях х, то уравнение (8) является следствием уравнения (9). Тем самым доказано, что уравнения (8) и (9) равносильны.
Из доказанной теоремы вытекает правило перенесения слагаемых из одной части уравнения в другую: если некоторое слагаемое данного уравнения перенести из одной части в другую, изменив знак этого слагаемого на противоположный, то получится уравнение, равносильное данному.
В самом деле, в силу теоремы 3 уравнения
равносильны: уравнение (11) получается путем прибавления функции — к обеим частям уравнения (10) и приведения подобных членов.
Кратко правило перенесения слагаемых формулируют так: всякое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.
Из доказанной теоремы вытекает, что всякое уравнение f(х) =F(х) можно заменить равносильным ему уравнением вида Ф(х) = 0. Для этого достаточно перенести F(х) в левую часть уравнения, заменив знак на противоположный, и положить f(х)— F(х) =Ф (х).
Теорема:
Если функция определена для всех допустимых значений х и ни при одном допустимом значении х не обращается в нуль, то уравнения
Доказательство:
Мы уже видели (теорема 2), что уравнение (13) является следствием уравнения (12). Докажем, что уравнение (12) в свою очередь является следствием уравнения (13). Уравнение (12) получается из уравнения (13) умножением обеих частей на функцию Так как по условию функция определена для всех допустимых значений х и не обращается при этих значениях в нуль, то функция также определена при всех допустимых значениях х. Поэтому уравнение (12) является следствием уравнения (13), а значит, эти уравнения равносильны.
Из доказанной теоремы вытекает, например, что уравнения
равносильны в области действительных чисел. В самом деле, уравнение (15) получается из уравнения (14) умножением на функцию , а эта функция всюду определена и не обращается в нуль при действительных значениях х.
не являются равносильными — второе получается из первого умножением на функцию , а эта функция обращается в нуль при х = ± 1. Поэтому второе уравнение, кроме корня удовлетворяющего и первому уравнению, имеет еще и корни
Уравнения (12) и (13) могут быть неравносильными и в том случае, когда множитель теряет смысл при некоторых допустимых значениях неизвестного. Например, уравнения
неравносильны: множитель теряет смысл при х = 2, а x = 2 как раз является корнем уравнения
Если в ходе решения уравнения приходилось умножать обе части этого уравнения на выражение , содержащее неизвестное, то надо проверить две вещи: а) Не обращается ли в нуль при допустимых значениях не известного? б) Не теряет ли смысл при некоторых допустимых значениях неизвестного?
В первом случае среди найденных корней могут оказаться посторонние корни, и надо проверить все найденные корни, удовлетворяют ли они первоначально заданному уравнению. Во втором же случае возможна потеря корней, и мы должны подставить в заданное уравнение значения неизвестного, при которых теряет смысл — среди этих значений могут оказаться потерянные в ходе решения корни уравнения.
Из теоремы 4 непосредственно вытекает справедливость утверждения: если обе части уравнения умножить на произвольное отличное от нуля число, то получим уравнение, равносильное данному.
Это утверждение кратко формулируют так: обе части уравнения можно умножать на произвольное отличное от нуля число.
Уравнения с одним неизвестным
Алгебраические уравнения с одним неизвестным:
Рациональным алгебраическим уравнением с одним неизвестным называют уравнение вида
где R(х) — алгебраическая дробь относительно х. К такому виду можно в силу теорем 3 и 5, привести любое уравнение — алгебраические дроби. Например, уравнение
является рациональным алгебраическим. В дальнейшем мы будем называть такие уравнения просто алгебраическими.
Применяя теоремы о равносильности уравнений, можно заменить каждое уравнение вида (1) равносильным ему уравнением вида:
где f(x)— многочлен от х. Для этого надо записать дробь R(x) в виде отношения двух многочленов. Мы получим уравнение:
где f(х) и — многочлены от х. Но дробь может равняться нулю лишь в случае, когда равен нулю ее числитель. Поэтому решение уравнения (1) сводится к решению уравнения f(x)=0, где f(х) — многочлен от х. При этом нужно иметь в виду, что решениями уравнения (1) являются лишь те корни уравнения (2), при которых дробь R(x) имеет смысл (то есть отлично от нуля).
Пример:
Перенесем в левую часть уравнения и приведем получившуюся сумму к общему знаменателю. Получим уравнение:
Приравнивая нулю числитель этой дроби, получаем уравнение х—2=0, корнем которого является число х=2. Однако при x=2 дробь не определена. Поэтому заданное уравнение корней не имеет.
Метод разложения на множители
Рассмотрим некоторые методы решения алгебраических уравнений, а также отдельные виды таких уравнений.
Выше было сказано, что при решении уравнения его заменяют другими уравнениями или совокупностями уравнений, равносильными заданному, но более простыми
Рассмотрим следующий пример. Пусть надо решить уравнение:
Мы знаем, что произведение может равняться нулю тогда и только тогда, когда хоть один из его сомножителей равен нулю. Поэтому, чтобы решить уравнение (1), надо найти все значения, при кототых хоть один из сомножителей равен нулю. А это все равно, что решить совокупность уравнений
Решая ее, находим для х значения и 6. Они и дают корни уравнения (1).
Метод, примененный для решения уравнения (1), в общем виде формулируется так.
Теорема:
Если функции определены на некотором множестве М, то на этом множестве уравнение
равносильно совокупности уравнений
Доказательство:
Пусть а — одно из решений совокупности (3). Это означает, что а является корнем одного из уравнений этой совокупности, например, уравнения а все остальные функции определены при х = а. Но тогда
так как один из сомножителей равен нулю. Следовательно, любое решение совокупности (3) является корнем уравнения (2).
Наоборот, пусть а — корень уравнения (2). Тогда f (а)=0, то есть Но произведение равно нулю лишь в случае, когда хоть один из сомножителей равен нулю. Поэтому хотя бы одно из чисел равно нулю. Это означает, что а является корнем хотя бы одного из уравнений то есть одним из решений совокупности уравнений (3).
Пример:
Левая часть этого уравнения разлагается на множители следующим образом:
Отсюда следует, что уравнение (4) равносильно совокупности уравнений:
Решая уравнения этой совокупности, получаем корни уравнения (4):
не равносильны, так как при х = 0 функция не определена. На множестве же они равносильны.
В некоторых случаях разложение на множители связано с искусственными преобразованиями. Рассмотрим, например, уравнение:
Нетрудно заметить, что
Поэтому уравнение (б) можно записать в виде:
Таким образом, все свелось к решению совокупности двух квадратных уравнений:
Решая их, находим корни уравнения (6):
Метод введения нового неизвестного
Наряду с методом разложения на множители часто применяется другой метод — введение нового неизвестного.
Рассмотрим следующий пример:
Если раскрыть скобки, то получится уравнение четвертой степени, решить которое довольно сложно. Мы поступим иначе. Обозначим через r. Тогда
Поэтому уравнение (1) после введения нового неизвестного z принимает вид
Решая это квадратное уравнение, получаем, что его корни равны:
Но Поэтому х удовлетворяет или уравнению или уравнению то есть совокупности уравнений:
Метод, примененный для решения уравнения (1), в общем виде заключается в следующем.
Пусть дано уравнение F(х)=0 и пусть функцию F(х) можно представить в виде так что уравнение F (х)=0 записывается в виде
Введем новое неизвестное z, положив Тогда вместо уравнения (1) получаем уравнение относительно Докажем следующую теорему.
Теорема:
Доказательство. Пусть b — корень уравнения где а — корень уравнения f (z)=0; f(а) =0. Тогда и потому
Таким образом, b удовлетворяет уравнению F (х) = 0.
Обратно, пусть b — корень уравнения F(х)=0 и Тогда
Следовательно, а — корень уравнения f(z)=0. Теорема доказана.
Из доказанной теоремы следует, что решение уравнения вида сводится к следующему: сначала находят корни уравнения f(z) =0; после этого надо решить все уравнения Совокупность корней этих уравнений и дает решение уравнения (2).
Биквадратные уравнения
Метод замены неизвестного при меняется для решения уравнений вида
Такие уравнения называют биквадратными. Чтобы решить уравнение (1), положим Тогда получим квадратное уравнение:
Его корнями являются числа:
Поэтому корни уравнения (1) получаются путем решения уравнений Значит, мы получаем четыре корня для уравнения (1)
Четыре корня возникают при различных комбинациях знаков:
При решении биквадратных уравнений (как и при решении квадратных уравнений) иногда приходится извлекать квадратные корни из отрицательных чисел. Это приводит к так называемым комплексным числам, которые будут изучены в главе V.
Пример. Решить уравнение
Полагая получаем квадратное уравнение:
Его корнями являются числа Значит, корни уравнения (8) имеют вид:
Возвратные уравнения 3-й и 4-й степеней
Многочлен n-й степени
называется возвратным, если его коэффициенты, одинаково уда ленные от начала и от конца, равны между собой. Иными словами, коэффициенты возвратного многочлена n-й степени удовлетворяют условию
Алгебраическое уравнение вида f(х)=0, где f(х) — возвратный многочлен, называют возвратным уравнением. Примерами таких уравнений являются:
Рассмотрим решение возвратных уравнений третьей и четвертой степеней. Возвратное уравнение третьей степени имеет вид:
Группируя члены, разложим выражение в левой части уравнения на множители:
Пример:
Разлагая левую часть уравнения на множители, получаем:
Корни квадратного уравнения равны Поэтому корнями заданного уравнения являются числа
Приведем пример задачи, сводящейся к разобранному типу уравнений.
Задача:
Из квадратного листа жести со стороной а см вырезают по углам четыре квадратика со стороной х см и делают из получившейся фигуры коробку. При каком значении х объем коробки равен ?
Решение:
Основанием коробки является квадрат со стороной а-2x, а ее высота равна х. Значит, объем коробки равен По условию имеем уравнение:
Положим . Мы получим для z уравнение
Разлагая на множители, получаем
Поэтому корни нашего уравнения равны
Из условия задачи следует, что Поэтому не удовлетворяет условию. Итак, либо , либо
Теперь рассмотрим возвратное уравнение 4-й степени:
Так как то х=0 не является корнем этого уравнения. Поэтому если разделить обе части уравнения (2) на то получим равносильное уравнение:
Введем новое неизвестное z, положив . Так как
Следовательно, уравнение (3) превращается в квадратное уравнение относительно z
Решив это уравнение, найдем его корни Чтобы найти х, остается решить совокупность уравнений:
Она сводится к совокупности квадратных уравнений:
Пример. Решить уравнение
Перепишем это уравнение в виде
и введем новое неизвестное . Получим уравнение:
Решая его, находим: . Чтобы найти корни уравнения (4), надо решить уравнения:
Наряду с уравнениями вида (1) и (2) рассматривают так называемые кососимметричные уравнения, или, иначе, возвратные уравнения второго рода. При n=4 они имеют вид:
Это уравнение сводится к
После этого вводят новое неизвестное по формуле . Так как то уравнение (6) сводится к квадратному уравнению Дальнейшее решение ведется так же, как и для обычных возвратных уравнений.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института