Как иначе называют числовые выражения
Числовые и буквенные выражения
Числовые выражения
В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.
Значение выражения — это результат выполненных действий.
Чтение числовых выражений
Решение числовых выражений
45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13
Сравнение значений числовых выражений
Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.
Для этого найдем значения каждого из них:
Буквенные выражения
Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.
Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.
Чаще всего используются буквы:
a, b, c, d, x, y, k, m, n
Алгоритм решения буквенного выражения
1. Прочитать буквенное выражение
2. Записать буквенное выражение
3. Подставить значение неизвестного в выражении
4. Вычислить результат
Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с
Подставим вместо неизвестного «с» число 4.
У нас получается выражение: 28 – 4
Переменные
Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.
Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства
Мы изменили значения переменных c и x. Переменной c присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:
Теперь мы можем найти значение этого выражения:
с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7
Поделись с друзьями в социальных сетях:
Числовые и буквенные выражения
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:
Это сложные числовые выражения.
Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
14 больше 4
14 > 4
6 + 8 > 2 * 2
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Пример 1. Найдите значение выражения: 5 + x.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x).
Выражения с переменными
Переменная — это значение буквы в буквенном выражении.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Задание раз.
Задание два.
Составьте буквенное выражение:
Сумма разности b и 345 и суммы 180 и x.
Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.
Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?
150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.
Ответ: Маша и Лена посмотрели всего 313 видео.
Числовые, буквенные выражения и выражения с переменными: определения, примеры
В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.
Числовые выражения
Конечно, числовые выражения содержат не только знаки «плюс» и «минус». Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.
Учитывая все сказанное, дадим определение. Что такое числовое выражение?
Определение. Числовое выражение
Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.
Поясним данное определение.
Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:
деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты.
Скобки в числовых выражениях
Согласно определению, числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения:
В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля.
Буквенные выражения
После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку.
Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.
Определение. Буквенное выражение
Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.
Приведем пример сложного буквенного выражения.
Выражения с переменными
В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.
Определение. Выражения с переменными
Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.
Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями «буквенное выражение» и «выражение с переменными» нивелируется.
Числовые и буквенные выражения
Для правильного решения уравнений нужно уметь пользоваться математическим языком. Словами математического языка являются числовые и буквенные выражения.
Математические выражения могут состоять из одного числа или из одной буквы:
Или из двух и более чисел и букв, соединённых знаками арифметических действий:
В записи выражений никогда не применяются знаки равенств и неравенств.
Выполнив все действия, получим число « 190 » — числовое значение выражения.
Если какое-либо число в числовом выражении заменить буквой, то полученное выражение называют буквенным.
Числовой множитель (коэффициент) всегда пишут перед буквой.
Знак умножения между числом и буквой обычно не пишут.
Знак умножения не пишут в тех случаях, когда один из множителей стоит перед или после скобки, или оба множителя выражены буквами.
Как читаются буквенные выражения
Читаются буквенные выражения следующим образом.
В буквенном выражении строчные латинские буквы могут обозначать различные числа.
Число, которым мы заменяем строчную латинскую букву при расчётах, называется значение буквы в буквенном выражении. В зависимости от задания примера таких значений у одной и той же буквы может быть несколько.
Задача № 336 (а) из учебника «Виленкин 5 класс»
Найдите значение выражения:
Вместо буквы « a » подставим данные в задании её значения. Сначала первое значение, затем второе.
Алгебра. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
Буквенное выражение – выражение, состоящее из букв, чисел, знаков математических действий и скобок.
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
На этом уроке мы узнаем, какие ещё бывают выражения, помимо числовых.
Возьмём, например, такое числовое выражение (15+3): 4 и заменим одно из чисел (или все сразу) буквой. Получится выражение, которое числовым уже нельзя назвать.
Такие выражения называют буквенными.
Буквенное выражение – это выражение, состоящее из букв, чисел, знаков математических действий и скобок.
Например, буквенные выражения могут выглядеть так:
Стоит отметить, что буквенные и числовые выражения называют алгебраическими выражениями.
Например, алгебраическими можно назвать следующие выражения:
Если взять два алгебраических выражения и соединить их знаками арифметических действий (сложения, вычитания, умножения или деления), то всё равно получится алгебраическое выражение.
Возьмём два алгебраических выражения и сложим их.
Полученное выражение называется суммой алгебраических выражений.
(2+36:с)+ (23–58•23) – сумма алгебраических выражений.
Возьмём два алгебраических выражения и вычтем из первого второе.
Полученное выражение называется разностью алгебраических выражений.
(2 + 36 : с) – (23 –58 • 23) – разность алгебраических выражений
Возьмём два алгебраических выражения и перемножим их. Полученное выражение называется произведением алгебраических выражений.
(2 + 36 : с) • (23 –58 • 23)
Стоит отметить, что очень часто знак умножения опускают.
(2 + 36 : с)(23– 58•23) – произведение алгебраических выражений.
И, наконец, возьмём два алгебраических выражения и разделим первое на второе.
Полученное выражение называется частным данных алгебраических выражений.
(2 + 36 : с) : (23 – 58 • 23)– частное алгебраических выражений.
Теперь разберёмся, где используют буквенные выражения.
Если с числовыми выражениями всё предельно просто, их используют для вычислений при решении тех или иных задач, в том числе и в других науках, то буквенные выражения просто необходимы при решении задач в общем виде.
Решим такую задачу.
Человек решил положить деньги в банк в сумме а рублей на 3 года. При условии, что банк будет начислять в конце каждого года х% от величины вклада. Сколько рублей будет иметь вкладчик на счёте в конце 3 года?
Решение. Для решения задачи можно использовать таблицу.
Заполним её, исходя из условия задачи.
У нас есть 3 года и один и тот же процент х.
Переведём данный процент в число, получатся следующее алгебраическое выражение:
Далее подсчитаем доход за первый год, для этого сумму вклада умножим на процент, выраженный числом, получается такое буквенное выражение:
Далее рассчитаем сумму на счёте в конце первого года, она будет состоять из суммы вклада и процента, получаем следующее алгебраическое выражение:
И теперь, если вместо букв а и х будут даны определённые числовые значения, останется их только подставить в решение и получить определённый результат.
Стоит отметить, что буквенное выражение может состоять только из буквы.
Разбор заданий тренировочного модуля.
1.Выберите верное выражение по условию задачи. 1кг печенья стоит 200 руб., а 1 кг конфет на х руб. больше. Во сколько раз 1 кг конфет дороже печенья?
Решение: Для решения задачи нужно сначала составить выражение для стоимости конфет. Оно выглядит следующим образом: 200+х руб. А теперь остаётся найти отношение цены за 1 кг конфет к печенью. Выражение выглядит так: (200+х): х.
Следовательно, правильный ответ:(200+х): х.
2. В течение года цена на квартиру поднялась на к%, а ещё через год увеличилась ещё на х%. На сколько процентов увеличилась цена на квартиру за 2 года? Выберите правильное выражение, которое характеризует ответ на поставленный вопрос.
Решение: Для решения задачи обозначим первоначальную стоимость за 100 %, тогда цена за квартиру в первый год составит (100+ к)%.
Найдем процент повышения цены за второй год от новой стоимости, выраженной в процентах. Получим следующее
Остаётся найти, на сколько процентов увеличилась цена на квартиру за 2 года. Для этого найдем разность между новой ценой за 2 год и первоначальной стоимостью.