Как исследовать рекуррентные последовательности на сходимость
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.
Сходимость рекуррентно заданной последовательности
Последний раз редактировалось wf34 04.03.2014, 17:23, всего редактировалось 1 раз.
Требуется доказать сходимость и вычислить предел рекурсивно заданной последовательности:
Очевидно, что последовательность не монотонна, единственный известный мне подход к доказательству эт по Коши.
Полную выкладку по Коши не прилагаю здесь, страницу текста так легко не наберешь на tex.
Тем более, что меня не покидает ощущение, что где в решении я свернул не туда.
Здесь было сделано допущение, что , и я пришел к следующему:
Последний раз редактировалось devgen 04.03.2014, 17:50, всего редактировалось 1 раз.
Последний раз редактировалось wf34 04.03.2014, 18:21, всего редактировалось 1 раз.
Вы красавец. вот сейчас уже, похоже на то, что решение куда-то движется.
Только пока не пойму, куда.
Считал численно значения функции, чисто для составления картинки в голове.
четные сходятся от 0 к
0.68 где-то.
нечетные сходятся от 1 тудаже.
Заслуженный участник |
Заслуженный участник |
Только пока не пойму, куда.
Заслуженный участник |
Последний раз редактировалось Ms-dos4 04.03.2014, 18:51, всего редактировалось 2 раз(а).
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей
Исследовать рекурсивно заданную последовательность на сходимость
Исследовать на сходимость последовательность
Исследовать на сходимость последовательность \<_
Исследовать на сходимость последовательность
Помогите, пожалуйста. Вот начал. а дальше не получается оценка
Исследовать последовательность на равномерную сходимость
Исследовать на равномерную сходимость последовательность: fn(x)=nx/(1-2x+2n) Если x=
Исследовать на равномерную сходимость последовательность
Ребят помогите решить. буду очень благодарен))) Добавлено через 3 минуты.
Добавлено через 5 минут
Предположим что an 2 > 1
ЧТД
Исследовать последовательность на сходимость
Привет всем. Мне нужно исследовать две последовательности на сходимость: 1).
Исследовать ряд на сходимость (в случае знакопеременного ряда на условную или абсолютную сходимость):
Помогите разобраться, я не понимаю по каким тут формулам искать, первый по Даламбера, а второй.
Исследовать функциональный ряд на сходимость и равномерную сходимость
Помогите пожалуйста дорешать. Исследовать функциональный ряд на сходимость и равномерную.
Рекуррентные соотношения и уравнения
В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.
Как решать рекуррентные соотношения?
Для решения рекуррентных соотношений применяют один из двух основных способов:
В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.
Метод производящих функций
Метод характеристических функций
Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:
Решение для последовательности чисел Фибоначчи
Общая формула данной рекуррентной последовательности имеет вид6
Способ 1. Производящяя функция
$$\begin
Складываем все строчки:
На третьем шаге алгоритма приводим все суммы к замкнутому виду:
откуда выводим искомое выражение для производящей функции:
Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:
Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:
Преобразуем данное выражение, используя то, что
Способ 2. Характеристическое уравнение
Тогда общее решение однородного рекуррентного уравнения имеет вид:
Решая систему, найдем
Итоговое выражение для последовательности чисел Фибоначчи:
Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.
Примеры решений
Числовая последовательность
Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.
Обозначается числовая последовательность так:
где −i-ый член последовательности.
При словестном задании последовательности, описывается из каких элементов она состоит.
Последовательность нечетных чисел:
Последовательность простых чисел :
Последовательности (1) и (2) мы задали словестно.
Последовательность нечетных чисел аналитически задается формулой
Отметим, что последовательность простых чисел невозможно задать аналитически.
Пример задания рекуррентной последовательности:
В этой последовательности
Пример стационарной последовательности:
Возрастающие и убывающие последовательности
Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :
Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :
Пример 1. Выяснить, монотонна ли последовательность
Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):
Найдем разность членов и
:
(3) |
Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:
Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).
Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(4) |
Посмотрим на правую часть выражения (4). Если a 10, то . Тогда последовательность является убывающей. При a=10
. Последовательность имеет одинаковые члены:
т.е. имеем дело с последовательностью
Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.
Ограниченные и неограниченные последовательности
Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.
Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.
Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(6) |
Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).
Далее, сделаем эквивалентное преобразование для проследовательности (5):
Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.
Так как последовательность возрастающая, то все члены последовательности не меньше . Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.
Сходящиеся и расходящиеся последовательности
Рассмотрим две числовые последовательности:
На координатной прямой изобразим члены этих последовательностей:
Предел числовой последовательности
Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:
Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.
Если k является пределом последовательности (yn), то пишут (
стремится к k или
сходится к k).
Обозначают это так:
Выраженние (11) читается так: предел проследовательности , при стремлении n к бесконечности равен k.
Изложим некоторые пояснения к определению 8.
Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал , где
радиус этой окрестности (
>0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.
Если же взять другую окресность (пусть
), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.
Пример 4. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы .
Пусть, например, r=0.001. Вычислим n‘ из уравнения
В качестве n0 берем 501. Имеем:
Запишем члены последовательности (12) начиная с номера 501:
Далее, учитывая (13), имеем:
Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность . А по определению 8, это означает:
Пример 5. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы
Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что для любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда
. Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).
Запишем члены последовательности, начиная с номера 2000:
Легко проверить, что . Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:
Пример 6. Найти предел последовательности
Решение. Выполним некоторые преобразования выражения (18):
Тогда последовательность (18) можно переписать так:
(19) |
Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):
Свойства сходящихся последовательностей
Сходящиеся последовательности обладают рядом свойств.
Свойство 1. Если последовательность сходится, то только к одному пределу.
Свойство 2. Если последовательность сходится, то она ограничена.
Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).
Предел стационарной последовательности равен значению любого члена последовательности:.
Теорема. Если , то
1. Предел суммы равен сумме пределов:
2. Предел произведения равен произведению пределов:
3. Предел частного равен частному пределов:
4. Постоянный множитель можно вывести за знак предела:
Пример 7. Найти предел последовательности:
Решение. Так как , то
Пример 8. Найти предел последовательности:
Решение. Применив правило «предел суммы» теоремы, получим
Пример 9. Вычислить:
Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»: