Python для чего используется примеры

Топ-16 Python-приложений в реальном мире

Удовольствие от написания Python-кода заключается в возможности создавать короткие, лаконичные и читаемые классы, которые выражают большой объем логики в небольшом объеме кода, а не в сотнях строк, утомляющих читателя.

За последние несколько лет технологии вокруг нас поменялись почти во всех аспектах. Мы живем в мире, где во главе угла стоит программное обеспечение, а за почти любой службой стоит какая-нибудь строчка кода. Индустрия путешествий, банкинг, образование, исследования, военная сфера — лишь немногие из тех, кто полагается на ПО.

Любой софт написан на каком-то языке программирования. А число последних лишь растет.

Однако одним из самых популярных в мире на сегодня является Python. В этом материале рассмотрим примеры реальных приложений, работающих на этом языке.

Реальные приложения на Python

Python сильно поменялся с момента создания в 1991 году Гвино ван Россумом. Это динамический, интерпретируемый, высокоуровневый язык программирования, с помощью которого можно создать массу разнообразных приложений. У него плавная кривая обучения и понятный синтаксис.

С помощью Python делают веб-приложения, видеоигры, занимаются Data Science и машинным обучения, разрабатывают софт, работающий в реальном мире, а также встроенные приложения и многое другое.

1. Веб-разработка

Наверняка все разработчики знают, что такое веб-разработка. Это квинтэссенция применимости Python. Также этот язык выделяет широкое разнообразие фреймворков и систем управления контентом (CMS), которые упрощают жизнь разработчика. Среди самых популярных решений — Django, Flask, Pyramid и Bottle. Среди CMS выделяются Django CMS, Plone CMS и Wagtail.

Веб-разработка на Python дает такие преимущества, как повышенная безопасность, масштабируемость и удобство в процессе работы. Также язык из коробки поддерживает такие протоколы, как HTML, XML, email-протоколы, FTP. У Python одна из крупнейших коллекций библиотек, упрощающих и улучшающих жизнь разработчика.

Посмотреть список сайтов, которые использую python можно на https://trends.builtwith.com/framework/Python.

2. Разработка игр

По аналогии с веб-разработкой в Python есть масса инструментов и библиотек для разработки игр. Кстати, а вы знали, что на этом языке программирования была написала популярная некогда Battlefield 2?

Для разработки игр используются такие библиотеки, как PyGame, Pycap, Construct, Panda3D, PySoy и PyOpenGL.

Также с помощью Python были разработаны такие проекты, как Sims 4, World of Tanks, Civilization IV и EVE Online. Можно вспомнить еще Mount & Blade, Doki Doki Literature Club, Frets on Fire и Disney’s Toontown Online.

3. Искусственный интеллект и машинное обучение

По данным GitHub Python расположился на втором месте среди языков, используемых для машинного обучения.

Искусственный интеллект и машинное обучение — очень популярные темы сегодня. С помощью них мы сегодня принимаем очень много решений. Python отчасти повлиял на такой рост популярность отрасли.

Стабильность и безопасность языка сделали его идеальным для интенсивных вычислений, без которых AI и ML не обходятся. А широкая коллекция библиотек помогает при разработке моделей и алгоритмов. Вот самые популярные библиотеки:

4. Графический интерфейс для настольных приложений

Иногда можно обойтись и без полноценного интерфейса, но для большинства проектов сегодня важен GUI. И для них в Python тоже есть множество решений.

При этом доступный синтаксис и модульная структура позволяют создавать быстрые и отзывчивые интерфейсы, делая еще и сам процесс разработки приятным. Среди самых популярных библиотек и фреймоворков — PyQt, Tkinter, Python GTK+, wxWidgets и Kivy.

5. Обработка изображений

Благодаря росту популярности машинного обучения, глубокого обучения и нейронных сетей выросла и роль инструментов для (предварительной) обработки изображений. Python в полной мере удовлетворяет этот спрос.

Среди самых популярных инструментов в Python можно выделить OpenCV, Scikit-Image, Python Imaging Library (PIL). Среди известных приложений, использующих Python — GIMP, Corel PaintShop, Blender и Houdini.

6. Обработка текста

Обработка текста — чуть ли не самый распространенный сценарий использования Python. Она руку идет с NLP (обработкой естественного языка), но не будем погружаться в эту тему сейчас. Обработка текста позволяет обрабатывать большие объемы текста, предоставляя гибкость структуры. Можно запросто сортировать строки, извлекать определенный текст, форматировать абзацы и так далее.

7. Бизнес приложения

Бизнес приложения во многом отличаются от обычного потребительского ПО. Во-первых, они предлагают ограниченный набор функций вместо десяток или даже сотен возможностей. Во-вторых, у них есть конкретная целевая группа (чаще всего ею выступает определенная организация).

Python отлично подходит для разработки таких высоконагруженных приложений.

Еще одной важной составляющей любого приложения является безопасность. И хотя почти все программы создаются с прицелом на безопасность, возможности Python в этом плане очень важны для бизнес-решений. Также Python позволяет писать масштабируемый код.

8. Образовательные и тренировочные программы

Python — отличная точка входа для каждого, кто хочет познакомиться с миром современного программирования. Все благодаря максимально простому синтаксису языка, который очень напоминает английский. Также изучается Python быстрее других языков. Именно поэтому этот язык один из основных кандидатов на то, чтобы быть первым языком программирования.

Есть масса обучающих ресурсов для получения начальных знаний по Python, но среди самых популярных можно выделить Coursera, edX, Udemy, Python Institute и Harvard.

9. Аудио и видео приложения

Эффективность Python позволяет использовать его для аудио и видео приложений. Для этого есть масса инструментов и библиотек. Сигнальная обработка, управление аудио, распознавание звуков — все это доступно с помощью таких библиотек, как Pyo, pyAudioANalysis, Dejavu и других.

Для видео же есть Scikit-video, OpenCV и SciPy. С их помощью можно управлять видеороликами и готовить их к использованию в других приложениях. На Python написаны Spotify, Netflix и YouTube.

10. Парсинг

В интернете просто невероятные объемы информации. И с помощью веб-парсеров данные на сайтах можно собирать, сохраняя их в одном месте. После этого их могут использовать исследователи, аналитики или организации для самых разных задач.

На Python есть такие библиотеки, как PythonRequest, BeautifulSoup, MechanicalSoup, Selenium и другие. Парсеры используются для отслеживания цены, аналитики, анализа в социальных медиа, проектах машинного обучения и в любых других проектах, где есть большие объемы данных.

11. Data Science и визуализация данных

Данные играют ключевую роль в современном мире. Они помогают понимать людей, их вкусы, собирать и анализировать интересные наблюдения. Это все — важная часть Data Science. В этой области требуется определить проблему, собрать данные, обработать их, изучить, проанализировать и визуализировать.

В экосистеме Python есть такие решения, как TensorFlow, PyTorch, Pandas, Scikit-Learn, NumPy, SciPy и многие другие.

Визуализация важна, когда данные нужно преподнести команде или держателям акций. Для этого в Python есть Plotly, Matplotlib, Seaborn, Ggplot, Geoplotlib и другие.

12. Научные и математические приложения

Мы уже определили, что в Python есть библиотеки для научных и математических вычислений, включая AI, ML и Data Science. Но даже если не брать эти сферы, язык пригодится, например, для работы с высокоуровневыми математическими функциями.

Стоит отметить такие инструменты, как Pandas, IPython, SciPy, Numeric Python, Matplotlib и другие. С помощью Python созданы такие приложения, как FreeCAD и Abaqus.

13. Разработка программного обеспечения

Python подходит не только для веб-разработки, научной разработки, создания игр или встраиваемых систем. По большому счету, это универсальное решение для софта любого типа. Все это возможно благодаря тому, что Python обеспечивает высокую скорость исполнения, хорошую совместимость, отличную поддержку со стороны сообщества, а также огромное количество библиотек. С помощью Python были созданы Roundup, Buildbot, SCons, Mercurial, Orbiter и Allura.

Часто разработчики используют Python как вспомогательный язык для управления проектами, контроля сборок и тестирования.

14. Операционные системы

Операционные системы — мозг любого компьютера. На Python, например, работают ОС, построенные на базе Linux. Как минимум, отдельные части таких систем.

В качестве примеров можно вспомнить Ubiquity Installer от Ubuntu, Anaconda Installer от Red Hat Enterprise. Также язык использовался для создания Gentoo Linux и системы управления пакетами Portage в Google Chrome OS. Вообще комбинация Python и C дает огромные преимущества при проектировании и разработке операционных систем.

15. CAD-приложения

CAD (computer aided design) приложения преимущественно используются в автомобильной, аэрокосмической и архитектурной сферах. Они помогают инженерам и дизайнерам проектировать продукты с точностью до миллиметров.

В среде Python из таких приложений есть FreeCAD, Fandango, PythonCAD, Blender и Vintech RCAM. Они предоставляют такие функции, как макрозапись, верстаки, симуляция роботов, скетчинг, поддержка мультиформатного импорта/экспорта, модули технического чертежа и многое другое.

16. Встроенные приложения

Одна из самых впечатляющих возможностей Python — работа на встроенном железе. Это такие устройства, которые предназначены для выполнения ограниченного набора действий. Встроенный софт — это тот, который отвечает за работу таких устройств. Среди самых популярных приложений MicroPython, Zerynth, PyMite и EmbeddedPython.

В качестве примера встроенных устройств можно вспомнить цифровые камеры, смартфоны, Raspberry Pi, промышленные роботы и другие, которые могут работать с помощью Python. Не все знают, но Python может использоваться как слой абстракции там, где на системном уровне работают C или C++.

Другие приложение на Python

Вывод

Python — продвинутый и универсальный язык программирования, который быстро приобретает популярность среди разработчиков в разных отраслях. Его можно применить почти в любой сфере благодаря широкому набору библиотек.

Если вы только знакомитесь с программированием в целом, то этот материал должен был убедить вас выбрать в качестве первого языка Python. Благо, выучить его сегодня легко с помощью обилия книг, курсов, GitHub-репозиториев, популярных инструментов и библиотек.

Источник

Что можно писать на Питоне: практическое применение Python, плюсы и минусы

То есть, изучив Python, потенциально вы сможете работать в компаниях с мировыми именами.

Для чего нужен Python

Отвечая на вопрос, для чего нужен Python, хочется сразу отметить, что это язык широкого назначения и у него нет специализированной сферы деятельности. Поэтому на Python в принципе можно написать что угодно.

Объектная ориентация. Это означает, что в нем вы можете создавать объекты и классы и проводить с ними любые операции. Но при этом Питону свойственно еще функциональное и императивное программирование.

Для чего используется Python: примеры

У каждого языка есть область деятельности, где язык программирования состоялся больше всего, для Питона это Data Science. В этой сфере есть много языков, которые можно использовать, но Python является несомненным лидером.

Основные примеры деятельности, для чего нужен Python:

искусственный интеллект и нейросети;

реализация интернета вещей;

обработка больших объемов данных;

разработка некоторых видеоигр;

Примеры практического применения Python:

В веб-разработке — это фреймворки Django, Flask, Pyramid, Pylons, CherryPy. А также движки для сайтов — Saleor, Wagtail, Django и др.

В мобильной разработке Питон применяется реже, однако замечен в написании сервера для Instagram.

Компьютерные игры: Wor l d of Tanks, Batt le field 2, EVE Online и др.

Встроенные системы: банкоматы российского Сбербанка, Ras p berry Pi, Embedded Python, на производственных станках и др.

Библиотеки для научного исследования: SciPy, NumPy, Matplot l ib и др.

Плюсы и минусы Python

И достоинств Питона можно отметить:

идеален для первого языка, так как имеет достаточно простые основы;

легкий в понимании синтаксис — его код легко читается и понимается;

широкая инфраструктура — есть большое количество разнообразных библиотек и фреймворков;

кроссплатформенный язык, который можно применять на любой операционной системе;

Из недостатков можно отметить:

не адаптирован для создания мобильных приложений;

из-за динамической типизации программы на Питоне требуют лучшего тестирования и большего количества тестов;

не работает с память ю на низком уровне;

Заключение

Вот и получается, что если вы хотите связать свою будущую профессию с машинным обучением, искусственным интеллектом или работой с данными, то Python — это лучший инструмент для достижения этой цели.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Почему программисты используют Python

P ython — привлекательный язык программирования, который стремительно набирает поклонников по всему миру. Достаточно открыть любой рейтинг популярных и актуальных языков (например рейтинг от TIOBE ) и увидеть, что «Питон» стабильно находится в тройке лидеров списка.

Что уж говорить — американские пользователи гуглили слово «Python» чаще, чем «Ким Кардашьян», а российские интернет-серферы искали «змею» чаще, чем «Тимати».

Python — это уникальное совмещение простоты и мощи

Такое способен продемонстрировать далеко не каждый инструмент для программирования.

Где используется язык Python

Мировой размах применения обусловлен не только синтаксисом и мощью, но и философией языка. Принципы Python доступны каждому — достаточно ввести в любом интерпретаторе код import this и узнать основные положения, которые лежат в основе «Питона».

Возможности Python опробованы десятками организаций.

Мощь и гибкость языка находит применение у следующих мировых брендов:

Как видно, возможности Python используются в решении разносторонних задач. Рядовые пользователи Всемирной сети обожают YouTube, который частично написан на языке Python, в то время как гиганты информационных технологий Intel или IBM активно используют «змею» для тестирования и исследований.

Помимо указанных организаций, алгоритмы Python также используются в следующих брендах:

Возможности Python активно внедряются и в отечественны проекты. Mail.ru и Яндекс используют алгоритмы, которые написаны на данном языке программирования.

Что можно написать на Python

Чрезвычайная гибкость Python позволяет использовать язык программирования во многих областях человеческой деятельности. Python как профессиональный инструмент актуален в следующих отраслях:

В 2021 году, компания JetBrains провела опрос — для каких задач программисты используют Python? Лидирующие места занимают — веб разработка, анализ данных, машинное обучение, программирование скраперов и системное администрирование.

Возможности языка отнюдь не ограничиваются перечисленными сферами. Начинающим программистам и рядовым пользователям нет нужды изучать машинное обучение, чтобы удостовериться в пользе Python.

Вещи, которые будут полезны каждому и которые может создать любой человек на Python:

Постоянное создание и переименование файлов, обновление электронных таблиц — от такой скучной работы никто не застрахован. «Питон» может выполнять все процессы за пользователя, оставляя последнему только чистое творчество.

Профессиональные области использования языка Python стоит рассмотреть подробнее. Явное лучше, чем неявное.

Девопс

DevOps — технология взаимодействия специалистов по разработке со специалистами по информационно-технологическому обслуживанию + взаимная интеграция их рабочих процессов. Около 30% всех вакансий по Development and Operations требуют знания «Питона». «Змеиный язык» сместил Perl и стал лидером в отрасли. Девопс требует четкого сценария, и язык программирования Python — идеальный инструмент для такой работы.

Тестирование

Королем тестирования остается Java, но Python постепенно захватывает все больше жизненного пространства. Адекватный специалист должен владеть обоими инструментами для правильной и всесторонней автоматизации тестирования. Данную особенность прекрасно понимает Google, который активно использует Python в своей деятельности.

Скраппинг

«Питон» оснащен всем необходимым для веб-скраппинга: библиотекой Requests, фреймворком Scrapy и специальным АПИ для Selenium. Возможности языка позволяют оптимизировать работу любого веб-сайта. Функционал позволяет разрабатывать генераторы отзывов, спам-машины и скрипты для парсинга.

Машинное обучение

Современный информационные технологии делают акцент на развитие искусственного интеллекта. Машинное обучение — это Альфа и Омега разработки ИИ. Специальные библиотеки «змеиного языка» позволяют составлять прогнозы и ориентироваться в науке данных:

Создание визуализации, распознавание речи и лица — все это доступно с помощью инструментария, который предоставляет Python. Для работы в области машинного обучения требуется не только отличный инструмент, но и умная голова. От специалиста необходимо доскональное знание математики и статистики.

Веб-разработка

«Питон» входит в тройку лидеров, которые регулярно используются для разработки сайтов и различных веб-приложений. В отличие от PHP (этот язык ругает множество профессионалов), Python позволяет создать адекватную и читаемую программу, для которой не будут требоваться «костыли».

Мощь Python — в быстрой и качественной разработке сложных веб-приложений. Арсенал «Питона» включает множество модулей, которые подходят для статистики и аналитических исследований. Отдельного внимания заслуживает возможность разрабатывать ГИС-сервисы, так как Python предоставляет все необходимое для работы с геоданными.

Веб-разработка остается перспективным направлением для Python. Начинающим специалистам имеет смысл не только изучать стандартные PHP/CSS/JavaScript, но и приглянуться к возможностям «Питона».

Геймдев

Что не стоит писать на Питоне

Несмотря на огромный потенциал, язык слабо подходит для ряда отраслей. Яркий пример — область микроконтроллеров ➖. Отечественные «питонисты» убедительно демонстрировали возможности инструмента MicroPython, но реальный список микроконтроллеров, которые поддерживает «Питон» — практически нулевой.

Другая область — кросс-платформенные GUI приложения ➖. У Python есть инструменты, которые позволяют писать такие программы:

На практике ни один инструмент не позволяет разработать полностью кросс-платформенное приложение. Постоянно встречаются несостыковки, ошибки и другие «подводные камни». Коммерческий Desktop — это еще одна сомнительная область для работы на «Питоне».

Отдельным особняком стоит разработка мобильных приложений ➖. Реальной работы в области Mobile Development, которая требует знаний «Питона», на рынке не найти. Лучше изучать другие, более традиционные инструменты (пример — Java).

Проблема малой пригодности Python кроется не в возможностях самого языка программирования, а в рыночных тенденциях и человеческих привычках. Программисты привязаны к классическим инструментам, которые ничуть не хуже возможностей «Питона». Тем не менее Python остается одним из самых перспективных языков программирования, которые стоит изучать начинающим специалистам.

HeadHunter красноречиво демонстрирует нарастающую востребованность как «Питона», так и отраслей, где применяется данный язык программирования.

Источник

3 самых важных сферы применения Python: возможности языка

Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.

Python для чего используется примеры. 0 lBhKdwfBlmWAPQFd e1529902672184. Python для чего используется примеры фото. Python для чего используется примеры-0 lBhKdwfBlmWAPQFd e1529902672184. картинка Python для чего используется примеры. картинка 0 lBhKdwfBlmWAPQFd e1529902672184

Если вы собираетесь изучать Python или совсем недавно начали его учить, вы точно задумывались, что же можно на нем сделать. Вопрос не простой, так как этот язык используется во многих сферах.

Но можно выделить 3 самых популярных направления применения Python:

Каждое из них заслуживает отдельного рассмотрения.

Веб-разработка

Относительно недавно в веб-разработке стали очень популярны Python-фреймворки, такие как Django и Flask. Они облегчают процесс написания на языке Python кода серверной части приложений. Это тот код, который запускается на сервере, а не на устройствах и браузерах пользователей (frontend-код). Если вы не знакомы с отличиями backend- и frontend-разработки, вам будет интересна заметка в конце статьи.

Зачем нужен веб-фреймворк?

Фреймворки позволяют легко и быстро создать базовую логику бэкенда. Она включает в себя сопоставление разных URL-адресов с частями Python-кода, работу с базами данных, создание HTML-представлений для отображения на устройствах пользователя.

Какой Python-фреймворк выбрать?

Django и Flask – два самых популярных веб-фреймворка, созданных для языка Python. Новичку следует выбрать один из них.

В чем разница между Django и Flask?

Другими словами, Flask – это, возможно, лучший выбор для начинающего разработчика, так как он содержит меньше компонентов. Кроме того, его стоит выбрать, если необходима тонкая настройка проекта.

Flask из-за своей гибкости лучше подходит для создания REST API.

С другой стороны, если стоит задача сделать что-то просто и быстро, вероятно, стоит выбрать Django.

Data Science: машинное обучение, анализ данных и визуализация

Прежде всего, следует разобраться, что такое машинное обучение.

Предположим, что вы хотите разработать программу, которая будет автоматически определять, что изображено на картинке.

Например, предлагая ей это изображение, вы хотите, чтобы программа опознала собаку.

Python для чего используется примеры. 0 Mbj3L2cl0zzT2A0L. Python для чего используется примеры фото. Python для чего используется примеры-0 Mbj3L2cl0zzT2A0L. картинка Python для чего используется примеры. картинка 0 Mbj3L2cl0zzT2A0L

А здесь она должна увидеть стол.

Python для чего используется примеры. . Python для чего используется примеры фото. Python для чего используется примеры-. картинка Python для чего используется примеры. картинка

Возможно, вы думаете, что для решения этой задачи можно просто написать код анализа изображения. Например, если на картинке много светло-коричневых пикселей, делаем вывод, что это собака.

Или вы можете научиться определять на изображении края и границы. Тогда картинка с большим количеством прямых границ, вероятно, окажется столом.

Однако это довольно сложный и непродуманный подход. Что делать, если на фотографии изображена белая собака без коричневых пятен? Или если на картинке круглый стол?

Здесь вступает в игру машинное обучение. Обычно оно реализует некоторый алгоритм, который позволяет автоматически обнаруживать знакомый шаблон среди входных данных.

Вы можете предложить алгоритму машинного обучения, скажем, 1000 изображений собаки и 1000 снимков столов. Он выучит разницу между этими объектами. Затем, когда вы дадите ему новую картинку со столом или собакой, он сможет определить, что именно на ней изображено.

Это очень похоже на то, как учатся маленькие дети. Каким именно образом они узнают, что одна вещь похожа на стол, а другая – на собаку? Из большого количества примеров.

Вы ведь не даете ребенку четкую инструкцию: «Если нечто пушистое и светло-каштановое, значит, это собака». Напротив, вы говорите: «Это собака. Это тоже собака. И это. А это стол. И это тоже стол».

Алгоритмы машинного обучения в основном работают сходным образом.

Эта технология может применяться:

Среди самых популярных алгоритмов машинного обучения, о которых вы, вероятно, слышали:

Любой из вышеперечисленных алгоритмов может быть использован для решения задачи с собаками и столами на изображениях.

Способы применения Python для машинного обучения

Существуют разные библиотеки и фреймворки для машинного обучения на Python. Две самые популярные – это scikit-learn и TensorFlow.

Новичкам в машинном обучении лучше начать со scikit-learn. Более опытным разработчикам, которые столкнулись с проблемами эффективности, стоит присмотреться к TensorFlow.

Как изучать машинное обучение?

Для ознакомления с основами предмета прекрасно подойдут курсы Стэнфорда или Калтеха (Калифорнийский технический институт). Следует отметить, что для понимания материала требуются базовые знания в области математического анализа и линейной алгебры.

Затем можно переходить к практике на платформе Kaggle. Это сайт, на котором исследователи в области data science создают различные алгоритмы машинного обучения для решения реальных проблем. Победители получают солидные денежные призы. У них также есть отличные учебники для начинающих.

Анализ и визуализация данных

Чтобы понять, о чем идет речь, следует обратиться к простому примеру.

Предположим, вы работаете аналитиком данных в компании, которая продает товары через Интернет. Вы можете получить такую гистограмму:

Python для чего используется примеры. 1 62T rtheKPehgZdPTEpKww. Python для чего используется примеры фото. Python для чего используется примеры-1 62T rtheKPehgZdPTEpKww. картинка Python для чего используется примеры. картинка 1 62T rtheKPehgZdPTEpKww

Из этого графика можно понять, что в это воскресенье мужчины купили более 400 единиц продукта, а женщины – около 350. Ваша задача, как аналитика, придумать несколько возможных объяснений такой разницы.

Один из очевидных вариантов заключается в том, что этот продукт больше популярен у мужчин, чем у женщин. Другое объяснение может быть связано со слишком маленьким размером выборки, который привел к недостоверным результатам. Третий вариант – мужчины по какой-либо причине склонны покупать продукт по воскресеньям.

Чтобы разобраться, в чем дело, вы можете просмотреть данные за всю неделю и составить новый график.

Python для чего используется примеры. . Python для чего используется примеры фото. Python для чего используется примеры-. картинка Python для чего используется примеры. картинка

Из схемы видно, что различие довольно устойчиво и проявляется не только по воскресеньям.

Можно сделать вывод, что наиболее убедительным объяснением является принципиально большая заинтересованность мужчин в этом продукте.

С другой стороны, график за неделю может выглядеть вот так.

Python для чего используется примеры. 1 dMpu fd THNXRJhHIq2O3g. Python для чего используется примеры фото. Python для чего используется примеры-1 dMpu fd THNXRJhHIq2O3g. картинка Python для чего используется примеры. картинка 1 dMpu fd THNXRJhHIq2O3g

Как здесь объяснить большую разницу в продажах в воскресенье?

Вы можете предположить, что мужчины в конце недели почему-то склонны покупать больше. Или это может оказаться простым совпадением.

Это упрощенный пример того, как выглядит реальный анализ данных.

Настоящие аналитики, например, в Google или Microsoft, делают то же самое, только их работа более сложная и комплексная.

Они используют язык запросов SQL, чтобы извлекать данные из баз. Затем для анализа и визуализации применяются специальные инструменты, например, Mathplotlib (для Python) или D3.js (для JavaScript).

Способы применения Python для анализа и визуализации данных

Одна из самых популярных библиотек для визуализации – Mathplotlib.

Новичкам следует начинать обучение с нее по двум причинам:

Как изучать анализ данных на Python?

Сначала следует изучить основы. Вот хорошее видео, посвященное данной теме:

Закрепить знания поможет курс по визуализации данных на Pluralsight. Получить его бесплатно можно, подписавшись на 10-дневную пробную версию.

Чтобы разобраться в основах статистики, пройдите курсы на Coursera и Khan Academy.

Автоматизация процессов

Одна из самых популярных сфер применения Python – это написание небольших скриптов для автоматизации различных рабочих операций и процессов.

В качестве примера можно привести систему обработки электронной почты. Для сбора статистики и анализа данных требуется подсчитывать количество входящих писем, содержащих определенные ключевые слова. Это можно делать вручную, или же написать простой скрипт, который все посчитает сам.

Есть несколько причин применения Python для задач автоматизации:

Встроенные приложения

Python является самым популярным языком программирования для Raspberry Pi.

Python и игры

Несмотря на то, что существует библиотека PyGame, популярность применения Python для создания игр невелика. Для серьезных проектов он не подходит.

Чтобы создавать хорошие мультиплатформенные игры, стоит присмотреться к одному из самых популярных движков Unity, работающем с языком C#.

Десктопные приложения

Вы можете создать парочку, используя Tkinter, но это не самое популярное решение.

Для этой задачи лучше использовать такие языки, как Java, C# и C++.

С недавних пор некоторые компании начали использовать для создания настольных приложений JavaScript. Например, десктопное приложение Slack было создано с помощью JavaScript-фреймворка Electron.

Преимущество написания настольных приложений на JavaScript заключается в том, что можно повторно использовать код веб-версии.

Python 3 или Python 2

Python 3 – это более современный и популярный выбор.

Пояснение о backend- и frontend-коде

Предположим, вы хотите сделать нечто, напоминающее Инстаграм.

Вам необходимо создать frontend-код для каждого типа устройств, который должен поддерживаться. Для этого могут использоваться разные языки программирования, например:

На каждом типе устройства будет запускаться свой набор кода. Он определит формат приложения, его внешний вид и т.д.

Однако вам требуется хранить личные данные и фотографии. Вы хотите использовать для этого свой сервер, а не устройства пользователей, чтобы подписчики могли просматривать фотографии друг друга.

Для решения этой задачи потребуется backend-код (server-side). Он будет выполнять следующие операции:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *