X принадлежит r что это значит

Область определения функции

Прежде чем перейти к изучению области определения функции внимательно изучите уроки
«Что такое функция в математике» и «Как решать задачи на функцию».

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

Вместо « x » (аргумента функции) в формулу « у = 2x » подставляем произвольные числовые значения и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу « у = 2x » и запишем результаты в таблицу.

xy = 2 x
x = −2у = 2 · (−2) = −4
x = 0y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3y = 2 · 3 = 6

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

Вернемся к нашей функции « у = 2x » и найдем её область определения.

Посмотрим ещё раз на таблицу функции « y = 2x », где мы подставляли произвольные числа вместо « x », чтобы найти « y ».

xy = 2x
−2−4
00
1
2
1
36

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать, что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

В нашей функции « у = 2x » вместо « x » можно подставить любое число, поэтому область определения функции « у = 2x » — это любые действительные числа.

Запишем область определения функции « у = 2x » через математические обозначения.

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на математические символы. Для этого вспомним понятие числовой оси.

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции « у = 2x ». Так как в функции
« у = 2x » нет ограничений для « x », заштрихуем всю числовую ось от минус бесконечности « −∞ » до плюс бесконечности « +∞ ».

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как « x ∈ R ».

Читается « x ∈ R » как: « x » принадлежит всем действительным числам».
Записи « x ∈ (−∞ ; +∞) » и
« x ∈ R » одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

№ 233 (2) Мерзляк 8 класс

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x » в функции
« f(x) =

8
x + 5

».

По законам математики из школьного курса мы помним, что на ноль делить нельзя. Иначе говоря, знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции « f(x) =

8
x + 5

». Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

Получается, что « x » может принимать любые числовые значения кроме « −5 ». На числовой оси заштрихуем все доступные значения для « x ».

Число « −5 » отмечено «пустой» точкой на числовой оси, так как не входит в область допустимых значений.

X принадлежит r что это значит. not. X принадлежит r что это значит фото. X принадлежит r что это значит-not. картинка X принадлежит r что это значит. картинка not

Запишем заштрихованную область на числовой оси через знаки неравенства.

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

Запишем промежутки через математические символы. Так как число « −5 » не входит в область определения функции, при записи ответа рядом с ним будет стоять круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке «Как записать ответ неравенства».

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

Запишем окончательный ответ для области определения функции
« f(x) =

8
x + 5

».

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

№ 98 (5) Колягин (Алимов) 8 класс

Найти область определения функции:

Из урока «Квадратный корень» мы помним, что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
« у = √ 6 − x ». Подкоренное выражение
« 6 − x » должно быть больше или равно нулю.

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

Запишем полученный ответ, используя числовую ось и математические символы. Число « 6 » отмечено «заполненной» точкой на числовой оси, так как входит в область допустимых значений.

X принадлежит r что это значит. function scope function with root. X принадлежит r что это значит фото. X принадлежит r что это значит-function scope function with root. картинка X принадлежит r что это значит. картинка function scope function with root

Правило для определения области определения функции

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

№ 242 (3) Мерзляк 8 класс

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции « f(x) = √ x + 3 +

1
x 2 − 9

» есть дробь «

1
x 2 − 9

», где « x » расположен в знаменателе. Запишем условие, что знаменатель « x 2 − 9 » не может быть равен нулю.

Решаем квадратное уравнение через формулу квадратного уравнения.

x1;2 =

−b ± √ b 2 − 4ac
2a

x1;2 =

−0 ± √ 0 2 − 4 · 1 · (−9)
2 · 1

x1;2

−0 ± √ 0 − (−36)
2

Запомним полученный результат. Задаем себе второй вопрос. Проверяем, есть ли в формуле функции
« f(x) = √ x + 3 +

1
x 2 − 9

» корень четной степени. В формуле есть квадратный корень « √ x + 3 ». Подкоренное выражение « x + 3 » должно быть больше или равно нулю.

Решим линейное неравенство.

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

Объединим полученные ответы по обоим вопросам:

Объединим все полученные результаты на числовых осях. Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

X принадлежит r что это значит. compare to find function scopes. X принадлежит r что это значит фото. X принадлежит r что это значит-compare to find function scopes. картинка X принадлежит r что это значит. картинка compare to find function scopes

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях. Обратим внимание, что числа « −3 » и « 3 » отмечены «пустыми» точками и не входят в итоговое решение.

X принадлежит r что это значит. compare to find function scopes with red. X принадлежит r что это значит фото. X принадлежит r что это значит-compare to find function scopes with red. картинка X принадлежит r что это значит. картинка compare to find function scopes with redПолучаем два числовых
промежутка « −3 » и « x > 3 », которые являются областью определения функции
« f(x) = √ x + 3 +

1
x 2 − 9

». Запишем окончательный ответ.

Примеры определения области определения функции

№ 101 Колягин (Алимов) 8 класс

Найти область определения функции:

Для поиска области определения функций задаем себе первый вопрос. Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции
« y = 6 √ x + 5 √ 1 + x » нет дробей.

Задаем второй вопрос. Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени: « 6 √ x ». Степень корня — число « 6 ». Число « 6 » — чётное, поэтому подкоренное выражение корня « 6 √ x » должно быть больше или равно нулю.

В формуле функции « y = 6 √ x + 5 √ 1 + x » также есть корень пятой степени
« 5 √ 1 + x ». Степень корня « 5 » — нечётное число, значит, никаких ограничений на подкоренное выражение « 1 + x » не накладывается.

Получается, что единственное ограничение области определения функции
« y = 6 √ x + 5 √ 1 + x » — это ограничение подкоренного выражения « 6 √ x ».

Нарисуем область определения функции на числовой оси и запишем ответ.

X принадлежит r что это значит. . X принадлежит r что это значит фото. X принадлежит r что это значит-. картинка X принадлежит r что это значит. картинка

№ 242 (4) Мерзляк 8 класс

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два. Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

√ x + 2 ≠ 0
x 2 − 7x + 6 ≠ 0

Обозначим их номерами « 1 » и « 2 » и решим каждое уравнение отдельно.

√ x + 2 ≠ 0 (1)
x 2 − 7x + 6 ≠ 0 (2)

Решаем первое уравнение.

Если значение квадратного корня
« √ x + 2 ≠ 0 » не должно быть равно нулю, значит, подкоренное выражение
« x + 2 ≠ 0 » также не должно быть равно нулю.

Теперь решим уравнение под номером « 2 », используя формулу квадратного уравнения.

x1;2 =

−b ± √ b 2 − 4ac
2a

x1;2 =

−(−7) ± √ (−7) 2 − 4 · 1 · 6
2 · 1

x1;2 =

7 ± √ 49 − 24
2

x1;2 =

7 ± 5
2
x1

7 + 5
2
x2

7 − 5
2
x1

12
2
x2

2
2
x1 ≠ 6

x2 ≠ 1

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

x ≠ −2
x ≠ 1
x ≠ 6

В формуле функции
« f(x) =

√ x − 4
√ x + 2

+

4x − 3
x 2 − 7x + 6

»

есть два корня « √ x − 4 » и « √ x + 2 ». Их подкоренные выражения должны быть больше или равны нулю.

x − 4 ≥ 0
x + 2 ≥ 0
x − 4 ≥ 0
x + 2 ≥ 0
x ≥ 4
x ≥ −2

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

X принадлежит r что это значит. solution system of inequality. X принадлежит r что это значит фото. X принадлежит r что это значит-solution system of inequality. картинка X принадлежит r что это значит. картинка solution system of inequality

Выпишем результат решения системы неравенств.

Объединим в таблицу ниже полученные ответы по обеим проверкам:

Результат проверки, что знаменатели дробей с « x » не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет всем полученным условиям.

Источник

Область определения функции

X принадлежит r что это значит. 5feb767f3f125512584509. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb767f3f125512584509. картинка X принадлежит r что это значит. картинка 5feb767f3f125512584509

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох.

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

Чтобы обозначить область определения некоторой функции f, используют запись D(f). При этом нужно помнить, что у некоторых функций есть собственные обозначения. Например, у тригонометрических. Поэтому в учебниках можно встретить такие записи: D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус.

Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = X. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1].

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

Например, все действительные числа от 2 до 5 включительно можно записать так:

Все положительные числа можно описать так:

Ноль не положительное число, поэтому скобка возле него круглая.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.

Смысл функции — в том, что каждому значению аргумента соответствует значение, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

Константная функция — функция, которая для любого элемента из области определения возвращает одно и то же заданное значение. Множество значений такой функции состоит из одного единственного элемента.

Область определения функции с корнем

Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).

Пример

Найти область определения функции: X принадлежит r что это значит. 5feb774e6c680610766230. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb774e6c680610766230. картинка X принадлежит r что это значит. картинка 5feb774e6c680610766230

Так как подкоренное выражение должно быть положительным, то решим неравенство x 2 + 4x + 3 > 0.

Разложим квадратный трёхчлен на множители:

Дискриминант положительный. Ищем корни:

X принадлежит r что это значит. 5feb77b05f9e8116228932. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb77b05f9e8116228932. картинка X принадлежит r что это значит. картинка 5feb77b05f9e8116228932

Значит парабола a(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).

Область определения степенной функции

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

Рассмотрим несколько примеров.

Область определения показательной функции

Область определения показательной функции — это множество R.

Примеры показательных функций:

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

Рассмотрим примеры логарифмических функций:

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции: X принадлежит r что это значит. 5feb78992273f987822086. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb78992273f987822086. картинка X принадлежит r что это значит. картинка 5feb78992273f987822086

Составим и решим систему:

X принадлежит r что это значит. 5feb78df1e994429456861. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb78df1e994429456861. картинка X принадлежит r что это значит. картинка 5feb78df1e994429456861

X принадлежит r что это значит. 5feb78f4e09f2729171503. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb78f4e09f2729171503. картинка X принадлежит r что это значит. картинка 5feb78f4e09f2729171503

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что X принадлежит r что это значит. 5feb794539695276815377. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb794539695276815377. картинка X принадлежит r что это значит. картинка 5feb794539695276815377и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Так как a(x) = 2x, то в область определения не войдут следующие точки:

X принадлежит r что это значит. 5feb797c6bbd8219952037. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb797c6bbd8219952037. картинка X принадлежит r что это значит. картинка 5feb797c6bbd8219952037

Перенесем 2 из левой части в знаменатель правой части:

X принадлежит r что это значит. 5feb799740f05250651320. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb799740f05250651320. картинка X принадлежит r что это значит. картинка 5feb799740f05250651320

В результате X принадлежит r что это значит. 5feb79b766075638713380. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb79b766075638713380. картинка X принадлежит r что это значит. картинка 5feb79b766075638713380. Отразим графически:

X принадлежит r что это значит. 5feb79dcf0454760676675. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb79dcf0454760676675. картинка X принадлежит r что это значит. картинка 5feb79dcf0454760676675

Ответ: область определения: X принадлежит r что это значит. 5feb79f7c3cf5427006692. X принадлежит r что это значит фото. X принадлежит r что это значит-5feb79f7c3cf5427006692. картинка X принадлежит r что это значит. картинка 5feb79f7c3cf5427006692.

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.

Функция

Область определения функции

Источник

ЧИТАТЬ КНИГУ ОНЛАЙН: Принцесса или тигр

НАСТРОЙКИ.

X принадлежит r что это значит. sel back. X принадлежит r что это значит фото. X принадлежит r что это значит-sel back. картинка X принадлежит r что это значит. картинка sel back

X принадлежит r что это значит. sel font. X принадлежит r что это значит фото. X принадлежит r что это значит-sel font. картинка X принадлежит r что это значит. картинка sel font

X принадлежит r что это значит. font decrease. X принадлежит r что это значит фото. X принадлежит r что это значит-font decrease. картинка X принадлежит r что это значит. картинка font decrease

X принадлежит r что это значит. font increase. X принадлежит r что это значит фото. X принадлежит r что это значит-font increase. картинка X принадлежит r что это значит. картинка font increase

СОДЕРЖАНИЕ.

СОДЕРЖАНИЕ

X принадлежит r что это значит. 2. X принадлежит r что это значит фото. X принадлежит r что это значит-2. картинка X принадлежит r что это значит. картинка 2

ПРИНЦЕССА ИЛИ ТИГР?

От редактора перевода

В 30-х годах этого века психолог Дж. Струп, языковед Э. Бенвенист и логик К. Гёдель примерно в одно время выполнили три исследования, с разных сторон освещающие одно и то же явление. Друг о друге эти ученые едва ли знали. Все три работы впоследствии стали классикой для профессионалов — психологов, лингвистов и математиков соответственно, — но за пределами этих узких кругов стала известной разве что теорема Гёделя (современный немецкий поэт Ганс Магнус Энценсбергер даже посвятил ей стихотворение).

В экспериментах Струпа испытуемому предъявляли слово, написанное цветными чернилами, и просили быстро назвать цвет чернил. Оказалось, что если красными чернилами написано слово СИНИЙ, то время реакции увеличивается. Смысл слова как бы мешает названию цвета, поскольку не совпадает с ним.

Бенвенист изучал свойство некоторых речевых высказываний, которое можно назвать аутореферентностью — ссылкой на себя. Этим свойством обладают те высказывания, при описании смысла которых следует учитывать сами эти высказывания как элемент действительности. Например, в описание смысла фразы «Приказываю открыть парад» должно входить указание на то, что само произнесение этой фразы является сигналом к открытию парада. Почти все военные команды обладают аутореферентностью. Иногда это разделение смысла команды на две части — содержание команды и приказ к ее исполнению — может быть явным. В строевой команде, произносимой «Нале-во!», часть «нале-» указывает направление поворота, а «-во» является сигналом к исполнению; здесь первая часть перестает быть аутореферентной. Важно отметить, что, как и в опыте Струпа, аутореферентное высказывание может быть внутренне конфликтным. В нашем примере, если приказ отдается лицом, не имеющим на это права, то часть интерпретации «это есть приказ к исполнению» оказывается ложной.

Гёдель исследовал программу аксиоматизации математики. Существует ли, например, такая явная система постулатов о свойствах целых чисел (вроде аксиом евклидовой геометрии), из которой чисто логически можно вывести все истинные теоремы о них? (Ложные при этом не должны выводиться.) Объяснить точно содержание этой задачи не очень легко даже математику, который специально логикой не занимался. Трудность состоит в описании смысла слов «все» и «вывести»— сначала приходится построить целую теорию, формальную систему, внутри которой этими словами можно пользоваться как математическими терминами. Как бы то ни было, Гёдель показал — вопреки некоторым ожиданиям, — что ответ на поставленный вопрос отрицателен, полной системы аксиом арифметики нет. Причина же этого лежит в странных свойствах аутореферентных высказываний, тех же, что и выше. Старинный парадокс лжеца (лжет ли человек, говорящий «я лгу»?) выявляет такую же внутренне конфликтную ситуацию, как слово «синий», написанное красным цветом. Такой конфликт можно имитировать внутри любой достаточно богатой формальной системы, и в рамках этой системы он окажется неразрешимым.

В построении такой имитации и состоит главное техническое достижение Гёделя. Читатель этой книжки, сумевший продумать содержащуюся в ней версию теоремы Гёделя, вероятно, оценит остроумие разных конструкций, которые приходится изобретать. При этом стоит поразмыслить и над тем, почему в опытах Струпа и в парадоксе лжеца внутренне конфликтное аутореферентное высказывание организуется гораздо проще, чем в рассуждении Гёделя. Кажется, ответ связан с тем, что в человеческом сознании «речевая» система, воспринимающая сигнал, отделена от «образной», оценивающей его содержание. В гёделевской же ситуации их приходится реализовывать общими средствами.

Рэймонд М. Смаллиан всю свою профессиональную жизнь занимается вещами, так или иначе связанными с логикой вообще и гёделевой теоремой в частности. В своих математических работах он предложил несколько вариантов формальных систем, в которых идея Гёделя реализуется, по мнению коллег, особенно красиво. В своих же популярных книжках, как эта и предыдущая (Как же называется эта книга? — М.: Мир, 1981), он, подобно каждому писателю, пользуется неведомыми свойствами нашего мозга, чтобы заставить любого терпеливого читателя изумляться, застывать в ожидании, радостно предвкушать и вообще волноваться по поводу вещей, довольно сухих по меркам здравого смысла. Иногда профессор Смаллиан слегка перебарщивает — я не смог заставить себя решать задачки про упырей. Но в лучших головоломках книга заставляет работать речевую и образную системы восприятия так, что они смешно мешают друг другу, вроде ног сороконожки в известной истории.

Логика, оторванная от своего естественного носителя — человеческого мозга, заморожена в микросхемах современных компьютеров. В человеческой голове она живет совершенно иначе, и вечные попытки человечества понять самое себя постоянно возвращают нас к раздумьям, которым посвящена эта книжка. Модели, которые в ней предлагаются, бывают смешны то своей простотой, то эксцентричностью. Смех от души над собственной логикой целителен во многих конфликтах.

Из множества занятных писем, присланных мне после выхода в свет моей первой книги логических головоломок (названия ее я никак не упомню!), одно принадлежало десятилетнему сыну довольно известного математика, с которым я в свое время учился в школе. В письме предлагалась весьма изящная и оригинальная задача, навеянная некоторыми задачками из моей книжки, которую мальчик прочитал взахлеб. Я сразу же позвонил отцу, решив поздравить его с таким умницей. Но тот, прежде чем позвать к телефону самого парнишку, стал заговорщически шептать в трубку: ‘Ему страшно нравится твоя книга! Но когда будешь с ним толковать, не проговорись, что эта штука называется математикой — в школе он ее просто ненавидит! Чуть заподозрит, что твоя книжка математическая, тут же забросит ее подальше».

Я вспомнил об этой истории потому, что она представляет собой иллюстрацию странного, но распространенного явления. Множество людей, с которыми я сталкивался, утверждали, что ненавидят математику, и в то же время с азартом накидывались на любую логическую или математическую задачу, которую я им подсовывал, стоило лишь облечь ее в форму занимательной головоломки. Я бы ничуть не удивился, если бы хорошие сборники головоломок оказались одним из лучших лекарств против так называемого «страха перед математикой». Более того, любой учебник математики вполне можно переписать в форме набора занимательных задач. Я иногда воображал, что бы произошло, если бы Евклид представил свои классические «Начала» именно в таком виде. Например, вместо того чтобы сформулировать в качестве теоремы утверждение о равенстве углов, лежащих в основании равнобедренного треугольника, а затем строго доказать эту теорему, Евклид начал бы так: «Задача. Дан треугольник с двумя равными сторонами. Всегда ли у него есть два равных угла? Если да, то почему, если нет, то тоже почему? (Решение смотри на странице такой-то.)» А потом и все остальные теоремы постарался бы изложить в таком же духе. Такая книжка вполне могла бы оказаться одним из самых популярных сборников задач в истории!

Вообще-то мои собственные сборники задач отличаются тем, что меня в первую очередь привлекают задачи, связанные с наиболее глубокими и важными результатами логики и математики. Так, истинной целью моей первой книги логических задач было желание дать широкому читателю хотя бы скромное представление о том, в чем же суть великой теоремы Геделя. Книжка, которую вы держите в руках сейчас, — следующий шаг в этом направлении. Многие факты и задачи из нее я использовал в одном из

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *