Как называется техника быстрого счета
Ментальный счет: описание методики, результаты, отзывы. Ментальная арифметика
Многие родители наверняка мечтают о том, чтобы их малыш вырос особенным и непременно стал таким, чтобы им можно было гордиться. Но если одни папы и мамы лишь хвастаются способностями своих детей, то другие ведут их в специальные школы, помогающие развивать данные природой задатки.
А можно ли вырастить из ребенка гения? Если в прежние времена ответ на такой вопрос был однозначен и требовал наличия таланта и удивительных способностей, то сегодня задача намного упростилась. Например, для того чтобы ребенок проявлял недюжинные познания в математике и считал так же быстро и правильно, как калькулятор, предлагается необычная программа, которая обучит малыша математике. А называется она «ментальная арифметика». Что это за программа и какими она обладает преимуществами?
Популярность методики
С 1993 г. ментальная арифметика используется для обучения детей в 52 странах мира, начиная с Канады и заканчивая Великобританией. В некоторых из них методику рекомендуют для включения в программу школ.
Наибольшее распространение ментальный счет получил в государствах Ближнего Востока, а также в Китае, Австралии, Таиланде, Австрии, США и Канаде. Начинают появляться специализированные организации в Казахстане, Киргизии и России.
Ментальный счет является одним из самых молодых и стремительно развивающихся способов, применяемых для детского образования. Благодаря этой методике можно без труда развить умственные способности ребенка, которые в первую очередь имеют математическую направленность. Благодаря освоению детьми техники ментального счета любая математическая задача превращается для них в простой и быстрый вычислительный процесс.
История возникновения
Методика ментального счета имеет древние корни. И это несмотря на то, что разработана она сравнительно недавно ученым из Турции Халитом Шеном. Что же он использовал для своей системы ментального счета? Абакус, который был создан в Китае еще 5 тыс. лет назад. Этот предмет представляет собой счеты, которые внесли огромный вклад в развитие всей мировой арифметики. После изобретения абакус начал свое постепенное распространение по всему миру. В 16-м веке из Китая он попал в Японию. На протяжении четырех сотен лет жители Страны восходящего солнца не только успешно использовали такие счеты, но и тщательно прорабатывали их, пытаясь усовершенствовать такой нужный для совершения арифметических действий предмет. И это им удалось. Японцы создали счеты соробан, которые и до сегодняшнего дня используются для обучения детей в начальной школе.
На протяжении всей истории развития человечества совершенствовалась математическая наука. И сегодня она может предложить нам огромное количество своих достижений. Но, несмотря на это, ученые считают, что использование абакуса приносит больше пользы в обучении детей точному счету.
Польза ментальной арифметики
Считается, что каждое из полушарий человеческого мозга отвечает за свои направления. Так, правое из них позволяет развить творчество, образное восприятие и мышление. Левое же в ответе за логическое мышление.
Деятельность полушарий активизируется в тот момент, когда человек начинает работать руками. Если активна правая из них, то начинает работать левое полушарие. И наоборот. Человек, работающий левой рукой, способствует активизации работы правого полушария.
Ученые сравнили калькулятор с абакусом и пришли к однозначному выводу, что первый из них расслабляет активность мозга. Абакус же, напротив, оттачивает и тренирует полушария.
Когда следует начать изучать ментальный счет? Отзывы приверженцев данной методики утверждают, что лучше всего осваивать этот способ в возрасте от четырех до двенадцати лет. И только в некоторых случаях период может быть продлен еще на четыре года. Это время, когда происходит бурное развитие мозга. И данный факт является замечательным посылом к тому, чтобы прививать ребенку базовые навыки, проводить изучение иностранных языков, развивать мышление, осваивать игру на музыкальных инструментах и боевые искусства.
Суть ментальной методики
Вся программа по освоению устного счета построена на последовательном прохождении двух этапов. На первом из них происходит ознакомление и овладение техникой выполнения арифметических действий с использованием косточек, во время которых задействованы одновременно две руки. Благодаря этому в процессе участвует как левое, так и правое полушарие. Это позволяет достигнуть максимально быстрого усвоения и выполнения арифметических действий. В своей работе ребенок использует абакус. Этот предмет позволяет ему совершенно свободно вычитать и умножать, складывать и делить, вычислять квадратный и кубический корень.
Во время прохождения второго этапа ученики обучаются ментальному счету, который производится в уме. Ребенок перестает постоянно привязываться к абакусу, что также стимулирует и его воображение. Левые полушария детей воспринимают цифры, а правые – образ костяшек. На этом и основана методика ментального счета. Мозг начинает работать с воображаемым абакусом, воспринимая при этом числа в форме картинок. Выполнение же математического счета ассоциируется с движением косточек.
Обучение ментальной арифметике быстрого счета является очень интересным и увлекательным процессом. Он по достоинству оценен сотнями тысяч людей и получил огромное количество положительных отзывов.
Абакус
Что же представляет собой эта загадочная и древняя счетная машинка? Абакус, или счеты для ментального счета, очень напоминают старые советские «костяшки». Весьма схожим является и принцип работы на этих двух приспособлениях. В чем же отличие этих счетов? Оно заключено в количестве костяшек, находящихся на спицах и в удобстве эксплуатации.
Стоит сказать о том, что для получения результата абакус потребует сделать большее количество движений руками. Как же устроен этот древний предмет, пришедший к нам из Китая? Он представляет собой рамку, в которую вставлены спицы. Причем их количество может быть разным. На спицах находится по пять штук нанизанных костяшек.
По длине каждую спицу пересекает разделительная планка. Над ней находится одна костяшка, а под ней, соответственно, четыре.
Методика ментального счета предусматривает определенное движение человека пальцами. Из них задействуются только указательный и большой. Все движения должны быть доведены до автоматизма, чему содействует их многократное повторение.
Интересно, что данный навык легко может быть утерян. Именно поэтому при освоении методики не стоит пропускать занятия.
Расположение чисел
Каковы азы счета в ментальной арифметике? Для того чтобы освоить данную методику, необходимо знать, как располагаются на абакусе числовые линейки. В его правой стороне находятся единицы. После этого идут десятки, затем сотни, после тысячи, десятки тысяч и так далее. Каждый из этих разрядов располагается на отдельной спице.
Костяшки, расположенные под разделительной планкой, это «1», а над ней – «5». Например, для того, чтобы на абакусе набрать число 3, понадобится отделить три костяшки, расположенные под разделительной планкой на спице, находящейся правее остальных. Рассмотрим пример с двойными числами, например, с 15. Для его набора на абакусе следует поднять вверх одну костяшку на спице десятков и опустить одну, находящуюся над верхней планкой на спице единиц.
Операции сложения
Как научиться ментальному счету? Для этого потребуется изучить, как проводятся на абакусе арифметические действия. Рассмотрим, например, сложение. Посмотрим, чему будет равна сумма чисел 22 и 13. Для начала понадобится отложить по две костяшки на спицах десятков и единиц, расположенные внизу разделительной планки. Далее к двум десяткам добавим еще один. Получится 30. Теперь приступим к сложению единичек. К двум прибавим еще три. Получится число «пять», которое обозначается костяшкой вверху разделительной планки. В итоге получается 35. Для освоения более сложных операций понадобится тщательным образом изучить специальную литературу. После освоения самых простых примеров рекомендуется потренироваться на абакусе. Таким образом, обучение становится максимально интересным.
Освоение второго этапа
После того как операции на абакусе не будут вызывать затруднений, можно приступить к устному счету ментальной арифметики. Это следующий уровень обучения. Он предполагает ментальный счет, то есть произведенный в уме. Для этого понадобится сделать для ребенка картинку абакуса. Самым простым вариантом является распечатка изображения этого предмета, которое затем должно быть наклеено на картон (можно взять его от коробки из-под обуви). По возможности картинка должна быть цветной. Это позволит ребенку легче представить ее в своем воображении.
Во избежание ошибок стоит помнить о том, что ментальный счет должен производиться слева направо. Что необходимо предпринять, чтобы отложить на абакусе двухзначное число? Для этого ребенку следует вначале левой рукой набрать костяшки, соответствующие десяткам, а после правой отделить на спице нужные единицы.
Так, для набора 6, 7, 8 и 9 следует использовать «Щепоточку». Этот процесс представляет собой сведение вместе указательного и большого пальца к разделительной планке и сбор костяшек, обозначающих цифру 5, и необходимого их числа на спице, которая расположена в нижней части абакуса. Вычитание чисел производится аналогичным образом. Той же «Щепоточкой» одновременно отбрасываются «пятерочки» и нужное количество косточек внизу.
Цели и результаты методики
Обучение ментальному счету позволяет ребенку добиться небывалых успехов в области математики. Детки, прошедшие специальный курс, с легкостью могут вычислить в уме десятизначные числа, умножить их и вычесть. Но стоит сказать о том, что и это не является главной целью подобного обучения. Счет представляет собой лишь способ, с помощью которого развиваются умственные способности человека.
Освоение ментальной арифметики способствует следующему:
В тех случаях, когда для освоения менара был использован профессиональный подход и специалисты достигли поставленных перед ними целей, ребенок без труда начинает решать в уме как простые, так и сложные задачи по математике. А арифметические действия на умножение и сложение он производит даже быстрее калькулятора.
Школы по обучению ментальной арифметике
Где же можно освоить эту уникальную методику? На сегодняшний день для изучения ментальной арифметики необходимо записаться в специализированный образовательный центр. В них специалисты занимаются с детьми на протяжении двух-трех лет. Помимо описанных выше этапов, с помощью которых можно освоить методику, существует еще десять ступеней. Причем каждую из них ученики проходят за 2-3 месяца.
Каждый из таких специализированных центров разрабатывает собственные программы обучения. Однако, несмотря на это, существуют и общие правила, которых придерживаются абсолютно все. Они состоят в том, что группы учеников формируются в зависимости от их возраста. Так, существует три базовых вида таких групп.
Это kinder, kids и junior. Занятия проводят опытные высококвалифицированные психологи и педагоги, которые прошли соответствующую подготовку и имеют необходимую аттестацию.
Помимо центров по обучению ментальному счету сегодня работают и специализированные школы, готовящие специалистов по соответствующему профилю. Как правило, преподаватели менара – это люди, имеющие не только психологическое и педагогическое образование, но и определенный опыт работы с детьми. И это очень важно. Ведь обучение ментальному счету представляет собой не только освоение навыков, позволяющих работать с древними счетами. В этом процессе непременно учитываются используемые в педагогической практике психологические особенности в развитии ребенка.
Отзывы о методике
Ментальная арифметика – это довольно новая программа, применяемая для обучения устному счету. Однако, несмотря на немногочисленные годы существования, она уже успела получить большую популярность и показала превосходные результаты. Отзывы многих родителей и детей подтверждают тот факт, что данная программа не только эффективна, но и максимально полезна. При этом стоит учесть, что менар вполне может быть успешно внедрен в школьное обучение, став для детей дополнительным инструментом в освоении математических навыков.
По отзывам родителей, отличные результаты у детей можно наблюдать уже по истечении двух-трех месяцев после начала занятий, которые проводятся всего по несколько часов в неделю. Многие родители подтверждают, что у их ребенка заметно улучшилась память, повысилась способность к сосредоточению, а мышление приняло креативный характер. При этом школьник начал радовать своих близких хорошими оценками, которые получает не только на уроках математики. Он повысил уровень своих знаний и по всем остальным предметам. Кроме того, ему с легкостью стал даваться иностранный язык.
Все это позволяет сделать однозначный вывод о том, что менар представляет собой не только новый способ освоения навыков вычисления. Отличные результаты методика дает и в сфере всестороннего развития личности. Кроме того, во время занятий ментальной арифметикой активизируется потенциал маленького человека. Это способствует формированию здоровой и успешной натуры, у которой имеется надежный и крепкий фундамент, позволяющий без особых усилий вступить во взрослую жизнь.
Устный счет: техника быстрого счета в уме
Секреты устного счёта
Существуют приемы устного счета — простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.
Прибавляем числа 7,8,9
Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.
Быстро складываем двузначные числа
Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».
Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:
Складываем в уме трехзначные числа
Особенности вычитания: приведение к круглым числам
Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.
Вычитаем в уме трехзначные числа
Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.
Умножить и разделить
Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:
Умножаем и делим на 4, 6, 8, 9
Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.
Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:
Как умножать и делить на 5
Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.
Умножение на 9
Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:
Счет на пальцах
Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:
Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.
Устный счёт на автомате
Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
Как быстро считать в уме: приемы устного счета больших чисел
Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.
Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.
После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).
Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью «Пределы для чайников» в нашем блоге.
Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.
Гаусс и устный счет
Карл Фридрих Гаусс
Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.
По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.
В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.
Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.
Сложение чисел в уме
Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.
Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.
Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14
Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.
Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6. Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:
356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084
Вычитание чисел в уме
Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.
Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.
Теперь считаем: 528-300-20-1=228-20-1=208-1=207
Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.
Умножение чисел в уме
Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.
Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.
Умножение многозначных чисел на однозначные
Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.
528=500+20+8
528*6=500*6+20*6+8*6=3000+120+48=3168
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Умножение двузначных чисел
Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.
Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2
28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896
Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.
Умножение на 11
Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.
Проверим и умножим 54 на 11.
Возведение в квадрат
С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.
Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.
Проверим! Возведем в квадрат число 75.
Раньше все считали без калькуляторов
Деление чисел в уме
Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.
Деление на однозначное число
При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.
Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:
6144:8=(5600+544):8=700+544:8
Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:
544:8=(480+64):8=60+64:8
Осталось разделить 64 на 8 и получить результат, сложив все результаты деления
6144:8=700+60+8=768
Деление на двузначное число
При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.
При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.
Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.
Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.
Сколько будет 4424:56?
Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.
56*80=4480
Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:
79*56=4424
Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.
Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»
Полезные советы
В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:
Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.