Как называется угол между плоскостями
Углы между плоскостями. Как определить угол между плоскостями
При решении геометрических задач в пространстве часто встречаются такие, где необходимо рассчитать углы между разными пространственными объектами. В данной статье рассмотрим вопрос нахождения углов между плоскостями и между ними и прямой.
Прямая в пространстве
Известно, что совершенно любая прямая на плоскости может быть определена следующим равенством:
Вам будет интересно: Пополняем словарный запас: жалованье — это.
Направляющий вектор прямой показывает ее ориентацию в пространстве. Этот параметр принадлежит прямой. Поскольку существует бесконечное множество параллельных в пространстве векторов, то для однозначного определения рассматриваемого геометрического объекта необходимо также знать координаты точки, принадлежащей ему.
Предположим, что имеется точка P(x0; y0; z0) и направляющий вектор v¯(a; b; c), тогда уравнение прямой может быть задано следующим образом:
(x; y; z ) = P + α * v¯ или
(x; y; z) = (x0; y0; z0) + α * (a; b; c)
Это выражение называется параметрическим векторным уравнением прямой. Коэффициент α является параметром, который может принимать абсолютно любые действительные значения. Координаты прямой можно представить явно, раскрывая это равенство:
Вам будет интересно: Школа № 937, Москва. Отзывы о школе 937
Уравнение плоскости
Известно несколько форм записи уравнения для плоскости в пространстве. Здесь же рассмотрим одну из них, которая чаще всего используется при расчете углов между двумя плоскостями или между одной из них и прямой.
Если известен некоторый вектор n¯(A; B; C), который перпендикулярен искомой плоскости, а также указана точка P(x0; y0; z0), которая принадлежит ей же, то общее уравнение для последней имеет вид:
Мы опустили вывод этого выражения, который является достаточно простым. Здесь лишь заметим, что, зная коэффициенты при переменных в уравнении плоскости, можно с легкостью найти все вектора, которые ей перпендикулярны. Последние называются нормалями и используются при расчетах углов между наклонной и плоскостью и между произвольными аналогами.
Расположение плоскостей и формула угла между ними
Допустим, имеются две плоскости. Какие существуют варианты их взаимного расположения в пространстве. Поскольку плоскость имеет два бесконечных размера и один нулевой, то возможны лишь два варианта их взаимной ориентации:
Вам будет интересно: Цунэтомо Ямамото: писатель и самурай
Углом между плоскостями называется показатель между их направляющими векторами, то есть между их нормалями n1¯ и n2¯.
Очевидно, что если являются параллельными плоскости, то угол пересечения равен нулю между ними. Если же они пересекаются, то он отличен от нуля, но всегда является острым. Частным случаем пересечения будет угол 90o, когда плоскости взаимно перпендикулярны друг другу.
Угол α между n1¯ и n2¯ легко определяется из произведения скалярного этих векторов. То есть имеет место формула:
α = arccos((n1¯ * n2¯)/(|n1¯| * |n2¯|))
Предположим, что координаты этих векторов следующие: n1¯(a1; b1; c1), n2¯(a2; b2; c2). Тогда, используя формулы для расчета скалярного произведения и модулей векторов через их координаты, выражение выше можно переписать в виде:
α = arccos(|a1 * a2 + b1 * b2 + c1 * c2| / (√(a12 + b12 + c12) * √(a22 + b22 + c22)))
Модуль в числителе появился потому, чтобы исключить значения тупых углов.
Примеры решения задач на определение угла пересечения плоскостей
Зная, как найти между плоскостями угол, решим следующую задачу. Даны две плоскости, уравнения которых имеют вид:
Чему между плоскостями равен угол?
Чтобы ответить на вопрос задачи, вспомним, что коэффициенты, стоящие при переменных в уравнении плоскости общем, являются координатами вектора направляющего. Для указанных плоскостей имеем следующие координаты их нормалей:
Теперь найдем произведение скалярное этих векторов и их модули, имеем:
Теперь можно подставить найденные числа в приведенную в предыдущем пункте формулу. Получаем:
α = arccos(|-16 | / (√26 * √30) ≈ 55,05o
Полученное значение соответствует острому углу пересечения плоскостей, указанных в условии задачи.
Теперь рассмотрим другой пример. Даны две плоскости:
Пересекаются ли они? Выпишем значения координат их направляющих векторов, посчитаем скалярное произведение их и модули:
(n1¯ * n2¯) = 3 + 3 + 0 = 6;
Тогда угол пересечения равен:
α = arccos(|6| / (√2 * √18) =0o.
Этот угол говорит о том, что плоскости не пересекаются, а являются параллельными. Тот факт, что они не совпадают друг с другом проверить просто. Возьмем для этого произвольную точку, принадлежащую первой из них, например, P(0; 3; 2). Подставим ее координаты во второе уравнение, получим:
Вам будет интересно: Особенности адыгейского алфавита и его фонетика
3 * 0 +3 * 3 + 8 = 17 ≠ 0
То есть точка P принадлежит только первой плоскости.
Таким образом, две плоскости параллельными являются, когда таковыми будут их нормали.
Плоскость и прямая
В случае рассмотрения взаимного расположения между плоскостью и прямой существует несколько больше вариантов, чем с двумя плоскостями. Связан этот факт с тем, что прямая является одномерным объектом. Прямая и плоскость могут быть:
Рассмотрим сначала последний случай, поскольку он требует введения понятия об угле пересечения.
Прямая и плоскость, значение угла между ними
Если плоскость прямая пересекает, то она называется наклонной по отношению к ней. Точку пересечения принято называть основанием наклонной. Чтобы определить между этими геометрическими объектами угол, необходимо опустить из любой точки прямой перпендикуляр на плоскость. Тогда точка пересечения перпендикуляра с плоскостью и место пересечения с ней наклонной образуют прямую. Последняя называется проекцией исходной прямой на рассматриваемую плоскость. Острый угол между прямой и проекцией ее является искомым.
Несколько запутанное определение угла между плоскостью и наклонной прояснит рисунок ниже.
Чтобы записать формулу для него, рассмотрим пример. Пусть имеется прямая и плоскость, которые описываются уравнениями:
(x ; y ; z ) = (x0; y0; z0) + λ * (a; b; c);
A * x + B * x + C * x + D = 0
Рассчитать искомый угол для этих объектов можно легко, если найти скалярное произведение между направляющими векторами прямой и плоскости. Полученный острый угол следует вычесть из 90o, тогда он получается между прямой и плоскостью.
Выше была представлена формула, дающая ответ на вопрос, как между плоскостями найти угол. Теперь приведем соответствующее выражение для случая прямой и плоскости:
α = arcsin(|a * A + b * B + c * C| / (√(a 2 + b2 + c 2) * √(A 2 + B 2 + C 2)))
Модуль в формуле позволяет вычислять только острые углы. Функция арксинуса появилась вместо арккосинуса благодаря использованию соответствующей формулы приведения между тригонометрическими функциями (cos(β) = sin(90o-β) = sin(α)).
Задача: плоскость пересекает прямую
Теперь покажем, как работать с приведенной формулой. Решим задачу: необходимо вычислить угол между осью y и плоскостью, заданной уравнением:
Эта плоскость показана на рисунке.
α = arcsin(|1| / (√1 * √2)) = arcsin(1 / √2) = 45o
Задача: параллельная плоскости прямая
Теперь решим аналогичную предыдущей задачу, вопрос которой поставлен иначе. Известны уравнения плоскости и прямой:
(x; y; z) = (1; 0; 0) + λ * (0; 2; 2)
Необходимо выяснить, являются ли эти геометрические объекты параллельными друг другу.
Полученный ноль говорит о том, что угол между этими векторами равен 90o, что доказывает прямой и плоскости параллельность.
Теперь проверим, является эта прямая только параллельной или же еще и лежит в плоскости. Для этого следует выбрать произвольную точку на прямой и проверить, принадлежит ли она плоскости. Например, примем λ = 0, тогда точка P(1; 0; 0) прямой принадлежит. Подставляем в уравнение плоскости P:
Точка P плоскости не принадлежит, а значит, и вся прямая в ней не лежит.
Где важно знать углы между рассмотренными геометрическими объектами?
Приведенные выше формулы и примеры решения задач представляют собой не только теоретический интерес. Они часто применяются для определения важных физических величин реальных объемных фигур, например призмы или пирамиды. Важно уметь определить между плоскостями угол при расчете объемов фигур и площадей их поверхностей. При этом, если в случае прямой призмы можно не использовать эти формулы для определения указанных величин, то для любого вида пирамиды их применение оказывается неизбежным.
Ниже рассмотрим пример использования изложенной теории для определения углов пирамиды с квадратным основанием.
Пирамида и ее углы
Ниже рисунок демонстрирует пирамиду, в основании которой лежит квадрат со стороной а. Высота фигуры составляет h. Нужно найти два угла:
Чтобы решить поставленную задачу, сначала следует ввести систему координат и определить параметры соответствующих вершин. На рисунке показано, что начало координат совпадает с точкой в центре квадратного основания. В этом случае плоскость основания описывается уравнением:
То есть для любых x и y значение третьей координаты всегда равно нулю. Боковая плоскость ABC пересекает ось z в точке B(0; 0; h), а ось y в точке с координатами (0; a/2; 0). Ось x она не пересекает. Это означает, что уравнение плоскости ABC можно записать в виде:
y / (a / 2) + z / h = 1 или
Вектор AB¯ является боковым ребром. Координаты его начала и конца равны: A(a/2; a/2; 0) и B(0; 0; h). Тогда координаты самого вектора:
Мы нашли все необходимые уравнения и вектора. Теперь остается воспользоваться рассмотренными формулами.
Рассчитаем сначала в пирамиде угол между плоскостями основания и боковой стороны. Соответствующие нормальные вектора равны: n1¯(0; 0; 1) и n2¯(0; 2*h; a). Тогда угол составит:
α = arccos(a / √(4 * h2 + a2 ))
Угол между плоскостью и ребром AB будет равен:
β = arcsin(h / √(a2 / 2 + h2 ))
Остается подставить конкретные значения стороны основания a и высоты h, чтобы получить необходимые углы.
Угол между двумя пересекающимися плоскостями: определение, примеры нахождения
Статья рассказывает о нахождении угла между плоскостями. После приведения определения зададим графическую иллюстрацию, рассмотрим подробный способ нахождения методом координат. Получим формулу для пересекающихся плоскостей, в которую входят координаты нормальных векторов.
Угол между плоскостями – определение
В материале будут использованы данные и понятия, которые ранее были изучены в статьях про плоскость и прямую в пространстве. Для начала необходимо перейти к рассуждениям, позволяющим иметь определенный подход к определению угла между двумя пересекающимися плоскостями.
Рассмотрим не рисунке, приведенном ниже.
Рассмотрим рисунок, приведенный ниже.
Нахождение угла между двумя пересекающимися плоскостями
Обычный способ для нахождения угла между пересекающимися плоскостями – это выполнение дополнительных построений. Это способствует определять его с точностью, причем делать это можно с помощью признаков равенства или подобия треугольника, синусов, косинусов угла.
Для наглядности необходимо выполнить чертеж. Получим, что
Наглядное представление необходимо для того, чтобы было удобней работать с углом между плоскостями.
Рассмотрим на рисунке, приведенном ниже.
Получаем, что A M = A B · A F B F = 2 · 4 2 5 = 4 5 5
t g ∠ A M E = A E A M = 4 4 5 5 = 5
Некоторые случаи нахождения угла между пересекающимися прямыми задаются при помощи координатной плоскости О х у z и методом координат. Рассмотрим подробней.
Вычисление угла между пересекающимися прямыми производится по формуле
α = a r c cos n 1 x · n 2 x + n 1 y · n 2 y + n 1 z · n 2 z n 1 x 2 + n 1 y 2 + n 1 z 2 · n 2 x 2 + n 2 y 2 + n 2 z 2
Необходимо произвести подстановку найденных координат в формулу вычисления угла через арккосинус. Получаем
Метод координат дает аналогичный результат.
Завершающая задача рассматривается с целью нахождения угла между пересекающимися плоскостями при имеющихся известных уравнениях плоскостей.
Необходимо подставить координаты нормальных векторов плоскостей в формулу вычисления искомого угла пересекающихся плоскостей. Тогда получаем, что
Двугранный угол (ЕГЭ 2022)
Дай нам 10 минут ты разберешься в одной из самых важных тем стереометрии.
И получишь за неё баллы на ЕГЭ!
Двугранный угол — коротко о главном
Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.
Двугранный угол может быть и острым и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).
Два способа найти угол между плоскостями:
Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.
Двугранный угол — определения
Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.
При этом прямая \( \displaystyle AB\) – это ребро двугранного угла, а полуплоскости \( \displaystyle \alpha \) и \( \displaystyle \beta \) – стороны или грани двугранного угла.
Двугранный угол получает обозначение по своему ребру: «двугранный угол \( \displaystyle AB\)».
С понятием двугранного угла тесно связано понятие угол между плоскостями.
Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.
Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:
Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
Линейный угол двугранного угла
Как измерить двугранный угол?
Нужно поступить так: из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.
В плоскости \( \displaystyle \alpha \) провели перпендикуляр \( \displaystyle MD\) к ребру \( \displaystyle AB\). Что получилось? Обычный, плоский угол \( \displaystyle \varphi \).
Вот этот угол и называется: линейный угол двугранного угла \( \displaystyle AB\).
Зачем этот линейный угол? Запомни, это очень ВАЖНО:
Двугранный угол измеряется величиной своего линейного угла.
То есть математически договорились, что если угол φ будет равен, к примеру \( \displaystyle 20<>^\circ \), то это будет автоматически означать, что угол \( \displaystyle AB\) равен \( \displaystyle 20<>^\circ \).
Вот и ключ к поиску величины двугранного угла и угла между плоскостями:
Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.
Ещё раз немного о названиях.
Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).
Как найти угол между плоскостями?
Найти угол между плоскостями можно двумя способами: геометрическим и алгебраическим.
Геометрический способ
При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.
Алгебраический способ
Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.
\( \displaystyle \cos \gamma =\frac<<_<1>><_<2>>+<_<1>><_<2>>+< |
Подробнее про уравнение плоскости ты можешь прочитать в статье «Расстояние от точки до плоскости»!
Какой же способ лучше? Зависит от задачи.
А если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.
Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать \( \displaystyle <_<1>>,<_<1>>,<
Давай разберём несложную задачу для примера. Мы применим оба метода к одной и той же задаче.
Решение геометрическим способом
В правильной треугольной пирамиде боковое ребро в три раза больше ребра основания. Найти двугранный угол при основании пирамиды.
Угол между плоскостями
Углы между плоскостями — обозначение
Углом между плоскостями именуется такой угол, который образовался между перпендикулярными прямыми, опущенными в пределах этих плоскостей к линии их пересечения.
Рассмотрим данное понятие наглядно с помощью картинки:
Допустим, α и β — пересекающиеся плоскости. Проведем к линии с перпендикуляр a, который принадлежит α. Далее проведем прямую b, лежащую в β и образующую с прямой c угол в 90°. Угол между α и β равен углу, который образовался между а и b, обозначенному на картинке как φ. В записи это выглядит следующим образом:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
На схеме видно, что при пересечении α и β возникают четыре угла, но углом между плоскостями считается острый угол. В случае, когда плоскости при пересечении создают прямые углы, они считаются перпендикулярными друг другу.
Расположение плоскостей и формула вычисления угла между ними
Существует несколько вариаций взаимного расположения двух плоскостей.
Параллельность
Две плоскости считаются параллельными в том случае, если у них отсутствуют общие точки.
Возьмем за условие, что плоскости α, расположенной в некоторой прямоугольной системе координат, соответствует общее уравнение: А1х+В1у+С1z+D1=0. А плоскость β определяется общим уравнением вида: А2х+В2у+С2z+D2=0.
Согласно теореме о параллельности плоскостей, чтобы α и β являлись параллельными, достаточно отсутствия решений системы линейных уравнений вида:
То есть приведенная выше система должна быть несовместной.
Доказательство
Допустим, указанные плоскости, соответствующие уравнениям А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 параллельны друг другу, следовательно, у них отсутствуют общие точки. Это значит, что нет ни одной точки в прямоугольной системе координат, находящейся в трехмерном пространстве, чьи координаты отвечали бы условиям обоих уравнений одновременно или:
В случае, если данная система уравнений не имеет решений, то в прямоугольной системе координат трехмерного пространства отсутствуют точки с координатами, одновременно отвечающими условиям обоих уравнений, входящих в рассматриваемую систему. Отсюда можно сделать вывод, что плоскости α и β с соответствующими им уравнениями А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 не обладают ни одной общей точкой, а значит, являются параллельными. Теорема доказана.
Перпендикулярность
Две плоскости перпендикулярны друг другу, в ситуации, когда они при взаимном пересечении образуют прямой угол, то есть угол в 90°.
Если одна из двух плоскостей проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости являются перпендикулярными.
Доказательство
Пусть: AB∈α, AB⊥β, AB∩β=A.
Необходимо доказать, что α⊥β.
Плоскость, перпендикулярная к прямой, по которой пересекаются две заданные плоскости, перпендикулярна к каждой из этих плоскостей.
Явность перпендикулярных пересекающихся плоскостей достигается при необходимом и достаточном условии, что нормальные векторы данных плоскостей при пересечении образовали прямой угол.
Доказательство
Допустим, в трехмерном пространстве существует некоторая прямоугольная система координат. При наличии нормальных векторов заданных плоскостей α и β с координатами:
то необходимо и достаточно, чтобы эти векторы приняли вид:
\(\left(\overrightarrow
Отсюда следует, что:
— нормальные векторы плоскостей α и β. Чтобы заданные плоскости были перпендикулярными, достаточно, чтобы скалярное произведение данных векторов ровнялось нулю, то есть принимало вид:
\(\left(\overrightarrow
Угол между плоскостями
Для вычисления угла между двумя пересекающимися плоскостями используют метод координат. Суть данного способа заключается в нахождении косинуса угла, образованного при пересечении плоскостей.
Предположим, что плоскости P1 и P2 заданы следующими уравнениями:
Найдем косинус угла между P1 и P2 по формуле:
Запишем в ответе модуль косинуса угла, поскольку за величину угла между плоскостями принимают острый угол.
Примеры решения задач
Задача №1
Плоскости заданы уравнениями:
Определить пересекаются ли α и β. В случае пересечения заданных плоскостей найти угол между ними.
Найдем угол между заданными плоскостями:
Далее вычислим косинус угла между α и β:
В ответе запишем модуль найденной величины.
Ответ: плоскости α и β пересекаются, а косинус угла между ними равен ½.
Задача №2
Плоскость α проходит через точку A(1,1,−1) и перпендикулярна к плоскостям, заданным уравнениями:
Составьте уравнение плоскости α.
Необходимым и достаточным условием перпендикулярности α к плоскостям β и φ является параллельность α к нормалям β и φ — N1 и N2, иными словами, α должна быть перпендикулярна к произведению векторов [N1,N2].
Следующим шагом выпишем уравнение плоскости α, проходящей через точку A(1,1,−1) и перпендикулярную вектору [N1,N2]=(−14,7,7):