Как зная произведение найти частное

Математика – царица наук. Она хоть и сложна, и многие боятся некоторых запутанных формул и вычислений, но все они состоят из простых арифметических действий сложения, вычитания, умножения и деления.

Производные операции от этих действий называются суммой, разностью, произведением и частным. Что такое частное в математике и каковы его главные свойства – будет подробно рассказано далее.

Основное свойство частного

Деление – это арифметическая операция, обратная умножению. С ее помощью можно просто узнать, сколько в первом числе содержится значений второго.

Как зная произведение найти частное. 617f71f73bda9312931065f9647f7512. Как зная произведение найти частное фото. Как зная произведение найти частное-617f71f73bda9312931065f9647f7512. картинка Как зная произведение найти частное. картинка 617f71f73bda9312931065f9647f7512

По аналогии с умножением, которое способно заменить собой многократное сложение, дробление способно заменить многократное вычитание.

Например, необходимо разделить 10 на 2. Это означает, что требуется узнать, сколько раз число 2 содержится в 10. Делая это вычитанием можно получить следующее:

10 — 2 — 2 — 2 — 2 — 2 = 0.

Проводя постепенное вычитание до нуля, можно определить, что двойка содержится в десятке ровно 5 раз и не образует остаток. Сделать это можно было однократно поделив два значения:

Частное чисел – это итог процесса деления одного значения на второе. Пример:

Как зная произведение найти частное. c0802a5ec366fb2c0a9372928f40e9c2. Как зная произведение найти частное фото. Как зная произведение найти частное-c0802a5ec366fb2c0a9372928f40e9c2. картинка Как зная произведение найти частное. картинка c0802a5ec366fb2c0a9372928f40e9c2

Одно из важнейших правил деления частного, называемое основным свойством частного, заключается в том, что если делимое и делитель умножить или разделить на одно и то же число, то итог этой операции и, соответственно частное, не изменится:

Как зная произведение найти частное. a11ea24aaba0ac41a9d7d9f90af47c16. Как зная произведение найти частное фото. Как зная произведение найти частное-a11ea24aaba0ac41a9d7d9f90af47c16. картинка Как зная произведение найти частное. картинка a11ea24aaba0ac41a9d7d9f90af47c16

При делении числа самого на себя результатом всегда будет единица, то есть справедливо равенство:

Как зная произведение найти частное. e3a0208a0e200a4b62f2c46ab32bdff4. Как зная произведение найти частное фото. Как зная произведение найти частное-e3a0208a0e200a4b62f2c46ab32bdff4. картинка Как зная произведение найти частное. картинка e3a0208a0e200a4b62f2c46ab32bdff4

Справедливо и другое правило: если разделить определенную величину на единицу, то итогом процесса будет сама эта величина, то есть делимое:

Как зная произведение найти частное. 353be0e2b59696e349d808977e91bbbb. Как зная произведение найти частное фото. Как зная произведение найти частное-353be0e2b59696e349d808977e91bbbb. картинка Как зная произведение найти частное. картинка 353be0e2b59696e349d808977e91bbbb

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно.

Изложенное правило имеет такой вид:

Как зная произведение найти частное. eadc7e02ce50f83bf33853b08bbac4df. Как зная произведение найти частное фото. Как зная произведение найти частное-eadc7e02ce50f83bf33853b08bbac4df. картинка Как зная произведение найти частное. картинка eadc7e02ce50f83bf33853b08bbac4df

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Увеличение или уменьшение делителя

Следующее правило звучит так: если увеличить или уменьшить делитель в n раз, то результат деления понизится или повысится в n-нное количество раз:

Как зная произведение найти частное. d79c8472f382b927230760619db0dc79. Как зная произведение найти частное фото. Как зная произведение найти частное-d79c8472f382b927230760619db0dc79. картинка Как зная произведение найти частное. картинка d79c8472f382b927230760619db0dc79

Для примера требуется взять частное двух значений 54 и 6:

a / b = c и пусть n = 3.

Проведём увеличение и уменьшение делителя:

Увеличив делитель в 3 раза, во столько же раз уменьшили частное. Уменьшив делитель в три раза, делитель, напротив, увеличился в три раза.

Проверить эти «законы» можно в любом онлайн калькуляторе или вручную в уме или на бумаге.

Данные правила являются фундаментальными и составляют базу арифметики, с которой начинается математика и остальные области знаний.

Источник

Нахождение неизвестного слагаемого, множителя: правила, примеры, решения

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Обычно решения подобных уравнений записывают следующим образом:

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Переходим к следующему правилу.

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Вот краткая запись всего решения:

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Вот краткая запись решения еще одного уравнения ( 2 · x − 7 ) : 3 − 5 = 2 :

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *