В чем заключается сущность статистического метода
Большая Энциклопедия Нефти и Газа
Сущность статистического метода заключается в том, что на основании массовых данных исследуется зависимость предельного дохода и предельных издержек от объема реализации продукции. [2]
Сущность статистического метода заключается в нахождении коэффициентов матрицы преобразования технологического оператора путем применения методов планирования эксперимента на математической модели, отражающей физико-химическую природу процесса. Большое число входных и выходных параметров элементов ХТС делает ночти невозможным определение коэффициентов матриц преобразования простым перебором переменных. Использование метода планирования эксперимента на математической модели позволяет значительно сократить расчетные процедуры и по лучить достаточно корректные результаты в заданном диапазоне изменений входных параметров. [3]
Сущность статистического метода заключается в том, что на основании массовых данных исследуется зависимость предельного дохода и предельных издержек от объема реализации продукции. [5]
Сущность статистического метода состоит в том, что на основании достаточной информации об интенсивности отказов элементов ( деталей, узлов) строят кривую их распределения. Исходя из уровня надежности определяют время, при достижении которого необходимо произвести замену или регулировку элементов. [6]
Сущность статистического метода заключается в определении на основе экспериментальных данных поля допуска для уровней вибрации на интересуемых частотах ( интервалах частот), которое характерно для машин данного типа и дает вероятность брака не более некоторой наперед установленной величины. [7]
Сущность статистических методов заключается в том, что они позволяют по выборке получить сведения о свойствах генеральной совокупности в целом. [9]
Сущность статистического метода приемочного контроля заключается в сопоставлении фактически обнаруженного количества ( или процента) брака в контролируемой выборке с теоретически возможным ( допустимым) во всей предъявленной к контролю партии. При таком контроле обоснованно устанавливается степень засоренности партии браком. Поскольку при таком контроле определяется только годность или негодность продукции, а качественные характеристики точно не определяются, то в контроле могут быть широко использованы шаблоны, калибры и другие измерители. [10]
Сущность статистического метода оценки точности достаточно подробно изложена в литературе. Этот метод применим в условиях производства большого количества одинаковых деталей, обработанных как на предварительно настроенных станках, так и методом пробных проходов. [11]
Сущность статистических методов определения времени проведения профилактических работ состоит в том, что на основании статистических оценок одного из определяющих работоспособность системы параметров производится прогнозирование момента наступления отказа. Определяющим параметром системы называется такой параметр, которым характеризуется ее техническое состояние, например, выходная мощность. Это может быть также выходная величина, характеризующая точность системы в статическом или динамическом режиме. Понятие определяющего параметра применимо и к выходному сигналу любого блока системы. Этот сигнал измеряется в контрольных точках на выходе при номинальном значении сигнала на выходе блока. [12]
Напомним, что сущность статистических методов состоит в том, чтобы по некоторой части генеральной совокупности ( т.е. по выборке) выносить суждения о ее свойствах в целом. [13]
Для устранения этого противоречия было высказано много различных гипотез о сущности статистического метода и о характере процессов во вселенной. Наиболее последовательным предположением для разрешения этого противоречия является, однако, высказанная ранее всех других флуктуационная гипотеза Больц-мана. [14]
Статистика. Шпаргалка
Шпаргалка подготовлена в соответствии с программой учебного курса «Экономическая статистика». В пособии кратко изложены ответы на вопросы по данной дисциплине, достаточные для ответа на экзамене или зачете. Пособие поможет в короткие сроки повторить ранее изученный материал, а также эффективно подготовиться к сдаче экзамена или зачета по данному предмету. Издание предназначено студентам экономических специальностей.
Оглавление
Приведённый ознакомительный фрагмент книги Статистика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
3. Метод статистики
Под статистической методологией понимается система принципов и совокупность методов, направленных на изучение количественных закономерностей, проявляющихся в структуре взаимосвязей и динамике социально-экономических явлений.
Важнейшими составными элементами метода статистики и статистической методологии являются:
1) статистическое наблюдение (сбор данных);
2) сводка и группировка;
3) обобщение и анализ полученных статистических данных.
Сущность первого элемента статистической методологии состоит в планомерном и систематичном сборе первичных данных об изучаемом объекте. Собранные сведения носят исчерпывающий характер.
Второй элемент подразумевает собой разделение совокупности данных, полученных на этапе наблюдения, на однородные группы по одному или нескольким признакам, подсчет итогов по каждой группе и подгруппе и оформление полученных итогов в виде статистической таблицы. Таким образом, все собранные факты подвергаются систематизации и классификации.
Сущность третьего элемента статистической методологии заключается в вычислении и социально-экономической интерпретации обобщающих статистических показателей: абсолютных величин; относительных величин; среди их величин; показателей вариации; показателей динамики; индексов и т.д. В процессе статистического анализа изучается структура, динамика и взаимосвязь общественных явлений и процессов.
Выделяют следующие этапы статистического анализа:
1) установление фактов и их оценка;
2) выявление характерных особенностей и причин явления;
3) сопоставление явления с нормативными, плановыми и прочими явлениями, принятыми за базу сравнения;
4) формулирование выводов, прогнозов, предположений и гипотез;
5) статистическая проверка выдвинутых гипотез. Три основных элемента статистической методологии являются также тремя стадиями любого статистического исследования.
К статистической методологии относят и способы, с помощью которых статистика производит свои исследования. Метод статистики выбирается в зависимости от изучаемого явления и конкретного предмета изучения: связи, закономерности или развития.
В статистике применяют следующие методы:
1) выборочный метод;
3) корреляционно-регрессионный анализ;
4) дисперсионный анализ;
5) многомерный анализ;
6) балансовый метод.
Большое значение в статистическом исследовании имеют графический и табличный методы, которые позволяют наглядно определить тенденцию развития изучаемого явления. Современная статистика располагает множеством методов анализа данных с применением вычислительной техники, позволяющих описать изменчивую структуру любого явления.
Статистические методы
Статисти́ческие ме́тоды — методы анализа статистических данных. Выделяют методы прикладной статистики, которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.
Содержание
Классификация статистических методов
Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.
Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):
а) разработка и исследование методов общего назначения, без учета специфики области применения;
б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;
в) применение статистических методов и моделей для статистического анализа конкретных данных.
Прикладная статистика
Прикладная статистика — это наука о том, как обрабатывать данные произвольной природы. Математической основой прикладной статистики и статистических методов анализа является теория вероятностей и математическая статистика.
Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.
Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.
В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.
При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.
Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.
Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.
Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.
Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.
Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. [2]).
В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.
Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы — существенно иной, чем для данных в виде чисел, векторов и функций.
Вероятностно-статистическое моделирование
При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине, социологии и маркетинге. Они часто объединяются вместе под названием «выборочные исследования».
Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов — в выборочных исследованиях речь обычно идет о сотнях, а в экспертных — о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.
Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.
Статистический анализ конкретных данных
Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.
Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).
Перспективы развития
Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.
Литература
2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. — М.: Мир, 1975. — 500 с.
3. Крамер Г. Математические методы статистики. — М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). — 648 с.
4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).
5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. — М.: Наука, 1969. — 512 с.
6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8
7 методов статистического анализа, которые может применять каждый
Деятельность людей во множестве случаев предполагает работу с данными, а она в свою очередь может подразумевать не только оперирование ими, но и их изучение, обработку и анализ. Например, когда нужно уплотнить информацию, найти какие-то взаимосвязи или определить структуры. И как раз для аналитики в этом случае очень удобно пользоваться не только разными техниками мышления, но и применять статистические методы.
Особенностью методов статистического анализа является их комплексность, обусловленная многообразием форм статистических закономерностей, а также сложностью процесса статистических исследований. Однако мы хотим поговорить именно о таких методах, которые может применять каждый, причем делать это эффективно и с удовольствием.
Статистическое исследование может проводиться посредством следующих методик:
Далее мы рассмотрим каждый из них более подробно. Но отметим, что представим лишь основные характеристики без подробного описания алгоритмов действий. Впрочем, понять их не составит никакого труда.
Статистическое наблюдение
Статистическое наблюдение является планомерным, организованным и в большинстве случаев систематическим сбором информации, направленным, главным образом, на явления социальной жизни. Реализуется данный метод через регистрацию предварительно определенных наиболее ярких признаков, цель которой состоит в последующем получении характеристик изучаемых явлений.
Статистическое наблюдение должно выполняться с учетом некоторых важных требований:
Также статистическое наблюдение может иметь две формы:
Кроме того, статистическое наблюдение может быть категоризировано на основе двух признаков: либо на основе характера регистрации данных, либо на основе охвата единиц наблюдения. К первой категории относятся опросы, документирование и прямое наблюдение, а ко второй – наблюдение сплошное и несплошное, т.е. выборочное.
Для получения данных при помощи статистического наблюдения можно применять такие способы как анкетирование, корреспондентская деятельность, самоисчисление (когда наблюдаемые, например, сами заполняют соответствующие документы), экспедиции и составление отчетов.
Сводка и группировка материалов статистического наблюдения
Говоря о втором методе, в первую очередь следует сказать о сводке. Сводка представляет собой процесс обработки определенных единичных фактов, которые образуют общую совокупность данных, собранных при наблюдении. Если сводка проводится грамотно, огромное количество единичных данных об отдельных объектах наблюдения может превратиться в целый комплекс статистических таблиц и результатов. Также такое исследование способствует определению общих черт и закономерностей исследуемых явлений.
С учетом показателей точности и глубины изучения можно выделить простую и сложную сводку, но любая из них должна основываться на конкретных этапах:
Важно заметить, что есть и разные формы сводки:
Выполняться же сводка может при помощи специализированного оборудования, например, с использованием компьютерного ПО или вручную.
Что же касается группировки, то этот процесс отличается разделением исследуемых данных на группы по признакам. Особенности поставленных статистическим анализом задач влияют на то, какой именно будет группировка: типологической, структурной или аналитической. Именно поэтому для сводки и группировки либо прибегают к услугам узкопрофильных специалистов, либо применяют конкретные техники мышления.
Абсолютные и относительные статистические величины
Абсолютные величина считаются самой первой формой представления статистических данных. С ее помощью удается придать явлениям размерные характеристики, например, по времени, по протяженности, по объему, по площади, по массе и т.д.
Если требуется узнать об индивидуальных абсолютных статистических величинах, можно прибегнуть к замерам, оценке, подсчету или взвешиванию. А если нужно получить итоговые объемные показатели, следует использовать сводку и группировку. Нужно иметь в виду, что абсолютные статистические величины отличаются наличием единиц измерения. К таким единицам относят стоимостные, трудовые и натуральные.
А относительные величины выражают количественные соотношения, касающиеся явлений социальной жизни. Чтобы их получить, одни величины всегда делятся на другие. Показатель, с которым сравнивают (это знаменатель), называют основанием сравнения, а показатель, которой сравнивают (это числитель), называют отчетной величиной.
Относительные величины могут быть разными, что зависит от их содержательной части. Например, существуют величины сравнения, величины уровня развития, величины интенсивности конкретного процесса, величины координации, структуры, динамики и т.д. и т.п.
Чтобы изучить какую-то совокупность по дифференцирующимся признакам, в статистическом анализе применяются средние величины – обобщающие качественные характеристики совокупности однородных явлений по какому-либо дифференцирующемуся признаку.
Крайне важным свойством средних величин является то, что они говорят о значениях конкретных признаков во всем их комплексе единым числом. Невзирая на то, что у отдельных единиц может наблюдаться количественная разница, средние величины выражают общие значения, свойственные всем единицам исследуемого комплекса. Получается, что при помощи характеристики чего-то одного можно получить характеристику целого.
Следует иметь в виду, что одним из самых важных условий применения средних величин, если проводится статистический анализ социальных явлений, считается однородность их комплекса, для которого и нужно узнать среднюю величину. А от такого, как именно будут представлены начальные данные для исчисления средней величины, будет зависеть и формула ее определения.
Вариационные ряды
В некоторых случаях данных о средних показателях тех или иных изучаемых величин может быть недостаточно, чтобы провести обработку, оценку и глубокий анализ какого-то явления или процесса. Тогда во внимание следует брать вариацию или разброс показателей отдельных единиц, который тоже представляет собой важную характеристику исследуемой совокупности.
На индивидуальные значения величин могут воздействовать многие факторы, а сами изучаемые явления или процессы могут быть очень многообразны, т.е. обладать вариацией (это многообразие и есть вариационные ряды), причины которой следует искать в сущности того, что изучается.
Вышеназванные абсолютные величины находятся в непосредственной зависимости от единиц измерения признаков, а значит, делают процесс изучения, оценки и сравнения двух и более вариационных рядов более сложным. А относительные показатели нужно вычислять в качестве соотношения абсолютных и средних показателей.
Выборка
Смысл выборочного метода (или проще – выборки) состоит в том, что по свойствам одной части определяются численные характеристики целого (это называется генеральной совокупностью). Основной выборочного метода является внутренняя связь, объединяющая части и целое, единичное и общее.
Метод выборки отличается рядом существенных преимуществ перед остальными, т.к. благодаря уменьшению количества наблюдений позволяет сократить объемы работы, затрачиваемые средства и усилия, а также успешно получать данные о таких процессах и явлениях, где либо нецелесообразно, либо просто невозможно исследовать их полностью.
Соответствие характеристик выборки характеристикам изучаемого явления или процесса будет зависеть от комплекса условий, и в первую очередь от того, как вообще будет реализовываться выборочный метод на практике. Это может быть как планомерный отбор, идущий по подготовленной схеме, так и непланомерный, когда выборка производится из генеральной совокупности.
Но во всех случаях выборочный метод должен быть типичным и соответствовать критериям объективности. Данные требования нужно выполнять всегда, т.к. именно от них будет зависеть соответствие характеристик метода и характеристик того, что подвергается статистическому анализу.
Таким образом, перед обработкой выборочного материала необходимо провести его тщательную проверку, избавившись тем самым от всего ненужного и второстепенного. Одновременно с этим, составляя выборку, в обязательном порядке нужно обходить стороной любую самодеятельность. Это означает, что ни в коем случае не следует делать выборку только из вариантов, кажущихся типичными, а все другие – отбрасывать.
Эффективная и качественная выборка должна составляться объективно, т.е. производить ее нужно так, чтобы были исключены любые субъективные влияния и предвзятые побуждения. И чтобы это условие было соблюдено должным образом, требуется прибегнуть к принципу рандомизации или, проще говоря, к принципу случайного отбора вариантов из всей их генеральной совокупности.
Представленный принцип служит основой теории выборочного метода, и следовать ему нужно всегда, когда требуется создать эффективную выборочную совокупность, причем случаи планомерного отбора исключением здесь не являются.
Корреляционный и регрессионный анализ
Корреляционный анализ и регрессионный анализ – это два высокоэффективных метода, позволяющие проводить анализ больших объемов данных для изучения возможной взаимосвязи двух или большего количества показателей.
В случае с корреляционным анализом задачами являются:
А в случае с регрессионным анализом задачи следующие:
Чтобы решить все вышеназванные задачи, практически всегда нужно применять и корреляционный и регрессионный анализ в комплексе.
Ряды динамики
Посредством этого метода статистического анализа очень удобно определять интенсивность или скорость, с которой развиваются явления, находить тенденцию их развития, выделять колебания, сравнивать динамику развития, находить взаимосвязь развивающихся во времени явлений.
Ряд динамики – это такой ряд, в котором во времени последовательно расположены статистические показатели, изменения которых характеризуют процесс развития исследуемого объекта или явления.
Ряд динамики включает в себя два компонента:
В совокупности эти компоненты представляют собой два члена ряда динамики, где первый член (временной период) обозначается буквой «t», а второй (уровень) – буквой «y».
Исходя из длительности временных промежутков, с которыми взаимосвязаны уровни, ряды динамики могут быть моментными и интервальными. Интервальные ряды позволяют складывать уровни для получения общей величины периодов, следующих один за другим, а в моментных такой возможности нет, но этого там и не требуется.
Ряды динамики также существуют с равными и разными интервалами. Суть же интервалов в моментных и интервальных рядах всегда разная. В первом случае интервалом является временной промежуток между датами, к которым привязаны данные для анализа (удобно использовать такой ряд, например, для определения количества действий за месяц, год и т.д.). А во втором случае – временной промежуток, к которому привязана совокупность обобщенных данных (такой ряд можно использовать для определения качества тех же самых действий за месяц, год и т.п.). Интервалы могут быть равными и разными, независимо от типа ряда.
Естественно, чтобы научиться грамотно применять каждый из методов статистического анализа, недостаточно просто знать о них, ведь, по сути, статистика – это целая наука, требующая еще и определенных навыков и умений. Но чтобы она давалась проще, можно и нужно тренировать свое мышление и улучшать когнитивные способности.
В остальном же исследование, оценка, обработка и анализ информации – очень интересные процессы. И даже в тех случаях, когда это не приводит к какому-то конкретному результату, за время исследования можно узнать множество интересных вещей. Статистический анализ нашел свое применение в огромном количестве сфер деятельности человека, а вы можете использовать его в учебе, работе, бизнесе и других областях, включая развитие детей и самообразование.